
Partial Type Constructors (extended version)
Or, Making ad hoc datatypes less ad hoc

MARK P. JONES, Portland State University, USA

J. GARRETT MORRIS, The University of Kansas, USA

RICHARD A. EISENBERG, Bryn Mawr College, USA

APOORV N. INGLE, The University of Kansas, USA

Functional programming languages assume that type constructors are total. Yet functional programmers know

better: counterexamples range from container types that make limiting assumptions about their contents

(e.g., requiring computable equality or ordering functions) to type families with defining equations only over

certain choices of arguments. We present a language design and formal theory of partial type constructors,

capturing the domains of type constructors using qualified types. Our design is both simple and expressive:

we support partial datatypes as first-class citizens (including as instances of parametric abstractions, such as

the Haskell Functor and Monad classes), and show a simple type elaboration algorithm that avoids placing

undue annotation burden on programmers. We show that our type system rejects ill-defined types and can be

compiled to a semantic model based on System F. Finally, we have conducted an experimental analysis of a

body of Haskell code, using a proof-of-concept implementation of our system; while there are cases where

our system requires additional annotations, these cases are rarely encountered in practical Haskell code.

ACM Reference Format:

Mark P. Jones, J. Garrett Morris, Richard A. Eisenberg, and Apoorv N. Ingle. 2019. Partial Type Constructors

(extended version): Or, Making ad hoc datatypes less ad hoc. 1, 1 (September 2019), 42 pages. https://doi.org/

10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
When does a type expression—the text that a programmer might use to describe a type or set of

values—actually represent a valid type? In languages with simple type systems (e.g., Java before

the introduction of generics [Bracha et al. 1998]), parsing and name resolution are enough. More

advanced systems, however, require additional tests. Languages that support parameterized types,

for example, must also check the arity of type constructors: it is not valid to use the type list in ML,

for instance, without a choice for its parameter. Arity checking is further extended to kind checking
in languages like Haskell that allow both types and type constructors to be used as parameters.

The set of all types—including Int, Bool, and Char, for example—is represented by the kind ⋆,
while parameterized type constructors like List or Map are assigned function kinds (⋆ → ⋆ and

⋆ → ⋆ → ⋆, respectively). Using a simple analog of type checking, these kinds can be used to

show that, for example, Map Int (List Char) is valid while List Int (Map Char) is not.

Authors’ addresses:Mark P. Jones, Department of Computer Science, Portland State University, 1900 SW4thAvenue, Portland,

OR, USA, mpj@pdx.edu; J. Garrett Morris, Information and Telecommunication Technology Center, The University of Kansas,

2335 Irving Hill Road, Lawrence, KS, USA, garrett@ittc.ku.edu; Richard A. Eisenberg, Bryn Mawr College, Department of

Computer Science, Bryn Mawr, PA, USA, rae@cs.brynmawr.edu; Apoorv N. Ingle, Information and Telecommunication

Technology Center, The University of Kansas, 2335 Irving Hill Road, Lawrence, KS, USA, ani@ku.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

XXXX-XXXX/2019/9-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: September 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Mark P. Jones, J. Garrett Morris, Richard A. Eisenberg, and Apoorv N. Ingle

In many languages, any type expression that passes basic checks like these is accepted as denoting

a valid type.
1
This works well for type constructors like List: we truly can construct and use lists of

type List t for any type t. But there are some situations where it is useful to take a more nuanced

approach, limiting the ways in which parameterized types are instantiated. We list a collection of

examples in Section 2.1, but focus here on a simple running example: unboxed arrays.

Although many functional programmers do not use them as heavily as linked lists, some appli-

cations do require the efficiency of proper packed arrays. Haskell’s array package2 gives us this
capability: An Array Int of size 10 is represented in memory by 10 contiguous cells, each storing

an Int.3 This provides efficient random access, but does not guarantee locality: each array cell

holds a pointer to a machine integer, and these may be stored at almost arbitrary locations.

For applications where locality is important, or where an additional level of indirection is other-

wise undesirable, the array package also supports unboxed arrays in the type UArray. Like Array,
UArray is parameterized by the type of its elements, but this type must be one for which the com-

piler knows an unboxed representation. At the time of writing, this set includes 17 types, including

Int and Double, but not Int → Bool or Integer (unbounded-size integers). A UArray Double
of size 10 really stores 10 machine double-precision floating-point numbers in a contiguous space

in memory, guaranteeing both efficient access and locality. The current implementation uses a class

IArray that allows manipulation of UArrays built from only the 17 allowed types; all functions

that manipulate UArrays are class-constrained.
Yet something is dissatisfying here: A UArray Integer makes no sense, as Integer cannot be

represented without indirection. However, nothing prevents us from writing functions that take

and return UArray Integers. This goes against the grain of a typed language: we want senseless

code to be detected right away and to induce errors.

We call UArray a partial type constructor : it is not a total function from ⋆ to ⋆, but a partial one.
And it is far from unique: Section 2 provides many examples of others. What is striking is the great

variety of ways that partiality can arise and the various ad-hoc techniques programmers have

invented to work with partial type constructors.

The main innovation in this paper is a new, practical treatment of datatypes that allows us

to specify partiality in type constructors uniformly and thus to eagerly reject chimeras like

UArray Integer. This framework is practical in that it is mostly backward-compatible, requiring

extra annotations only rarely. (In some cases, annotations written today become redundant.) We

also show that our system allows for the easy definition of instances for such types. Currently,

we cannot define, say, a Functor instance for UArray, because nothing can prevent the user from

using fmap to create a UArray Integer from a UArray Int.
We offer the following contributions:

• A practical design for a type system that uniformly supports partial type constructors (Sec-

tion 3). Our design forbids types like UArray Integer and allows instances like Functor
UArray. We give datatype contexts, a much-maligned feature of Haskell, a fresh semantics

that echoes the described intent in the original Haskell 1.0 Report [Hudak and Wadler 1990]

(see Section 7).

• A formalization of our type system (Section 4), showing that it rejects terms with disal-

lowed types and supports a simple elaboration algorithm to introduce many of the required

constraints.

1
An important exception is for languages that support bounded polymorphism, which is an alternative approach to our

work, suitable for languages that support subtyping. See the end of Section 7.

2
http://hackage.haskell.org/package/array

3
The actual implementation of Array also parameterizes Array with an index type, while the IArray class is parameterized

over both the array type and the element type. We elide these details.

, Vol. 1, No. 1, Article . Publication date: September 2019.

http://hackage.haskell.org/package/array

Partial Type Constructors (extended version) 3

• An internal language of evidence, suitable as a compilation target for our surface language

(Section 5). The internal language, based on System F, allows for explicit predicate evidence in

types and for predicates in kinds. It has a standard semantics; type constructors are total. We

prove that compilation of a program accepted in the surface language produces one accepted

in the internal language.

• An experimental analysis of a body of Haskell code based on a proof-of-concept implemen-

tation of our design (Section 6). We demonstrate that our approach introduces minimal

annotation overhead in practical functional programs.

We present our work in the context of Haskell, as Haskell provides several practical examples of

partial datatypes and Haskell’s type classes have just the right semantics to describe partiality.

However, we view our work as a description of an unexplored, useful point in the design space for

typed languages. Section 6.2 explores some of the potential consequences of applying our design in

a practical language.

2 MOTIVATING SCENARIOS
Typed programming languages have survived for decades without partial type constructors. This

section presents examples of notionally partial type constructors used today and argues that the

status quo is lacking.

2.1 Partial Type Constructors in the Wild
UArraymight seem like a somewhat special case. But there are many other examples of partial type

constructors, both in practical Haskell code and in the research literature surrounding functional

programming and its extensions.

Collection types. In many languages, we can define a parameterized datatype BST t that repre-
sents binary search trees storing values of type t at each interior node. While it may be possible, in

principle, to construct values of this type for any choice of t, it is only useful to do so if t has an
associated ordering that can be used in the implementation of standard search tree operations such

as insert and lookup. There are numerous other examples of collection types, like BST, that make

sense only in cases where the parameters support some additional operations, such as an equality

test, a comparison, or a hash function.

Number types. Haskell’s standard libraries include definitions for types Ratio t and Complex t
that are used to represent rational and complex numbers. Although they can technically be used

with any parameter type t, these types are only intended to be used with types that are instances

of the Integral and RealFloat classes, respectively.

Monad transformers. The monad transformer library, mtl4, introduces a standard set of con-

structions to build monads out of other monads—if m is a monad, then ExceptT e m is a similar

monad that also provides exceptions of type e. Such a construction is only meaningful if m is

a monad—for example, the type ExceptT e Ratio is well-kinded but does not actually capture

anything about exceptions because Ratio is not an instance of the Monad class. As a consequence,

the implementation of the monad transformer library is littered with Monad m constraints that

convey no new information to the programmer, but are necessary to exclude pathological cases.

Representation considerations. Although functional programming encourages the use of high-

level abstractions, there are still some settings that require developers to understand (and perhaps

make concessions to) details of low-level data representation.

4
http://hackage.haskell.org/package/mtl

, Vol. 1, No. 1, Article . Publication date: September 2019.

http://hackage.haskell.org/package/mtl

4 Mark P. Jones, J. Garrett Morris, Richard A. Eisenberg, and Apoorv N. Ingle

• The UArray example falls into this category.

• In distributed computing, we might use typed channels for communication between the

components of a system, but we can only use these channels for types whose values can be

serialized/marshaled in some appropriate manner.

• In the code that deals with virtual memory management in an operating system we might

use a parameterized type to describe the data that is stored in page table entries, with the

parameter describing how the bits in an unmapped entry will be used. But this only makes

sense for types whose values fit within the limited number of bits that the hardware provides.

Type functions. The type families extension of Haskell [Chakravarty et al. 2005; Schrijvers et al.

2008], as implemented in GHC [GHC Team 2017, Section 10.9], provides a widely used mechanism

for type-level programming. In particular, this allows the definition of open type functions using a

collection of instance declarations, potentially spread over multiple modules, each of which describes

the result of applying the function to a specific pattern of type arguments. A standard application is

to define the function Elem that returns the type of elements stored in a given collection type. For

example, a programmer might write type instance Elem (List a) = a to identify the element

type a of a list type List a. In general, however, the result of a given type function will only be

defined for certain combinations of arguments: Not every type makes sense as a collection type,

for example, and so the interpretation of types like Elem Bool or Elem (Int, Bool) might be left

unspecified. This aspect of partial types is explored in prior work [Morris and Eisenberg 2017], but

the current paper sets this in a larger framework.

Numeric constraints. Some languages include support for type-level numbers, which can be used

as arguments of parameterized types to specify and validate key details such as the size of a vector

or array, the depth of a tree, the width of a cryptographic key, or the alignment of a pointer. In

practice, however, these types may only be valid in some cases, requiring, for example, that the

numbers fall within a given range or set and/or satisfy certain arithmetic constraints, such as being

a power of two or a multiple of some constant.

Informative evidence. In a dependently typed setting, we often must return informative evidence

from a comparison operation; this evidence can be examined to assert new facts to the type checker.

For example, we might compare keys into a heterogeneous map (where HMap k v relates keys of
type k i to values of type v i, but where the index i varies between entries). The comparison

operation cannot return a simple Ordering, as the type checker cannot know the difference between

GT and EQ as the program proves the implementation preserves indices. Instead, we must use a

datatype like this:

data GOrdering a b where

GLT :: a < b ⇒ GOrdering a b

GEQ :: GOrdering a a

GGT :: a > b ⇒ GOrdering a b

This would not make sense for any a and b though: their kind must support ordering. Using

GOrdering at a kind that does not have an ordering constraint would be meaningless, and thus

GOrdering is a partial type constructor.

Types as sets. It is common to interpret all of the types in a functional language as domains (i.e.,
pointed CPOs), so as to ensure a well-defined semantics for arbitrary recursive definitions. But it

is also possible to interpret types as sets, or to use combinations of domains and sets within the

same environment, as in Isabelle/HOLCF [Huffman 2012] or in the extension of Haskell suggested

by Launchbury and Paterson [1996] that uses type classes to distinguish between pointed and

, Vol. 1, No. 1, Article . Publication date: September 2019.

Partial Type Constructors (extended version) 5

unpointed types. When we mix domains and sets like this, it is important to distinguish between

the different function spaces that might be used. Continuous functions, for example, correspond

to parameterized types that we might write as a � b, but these only make sense when b is a

domain type. Similarly, total functions on sets form parameterized types that perhaps are written

as a � b. But these may only be valid if both a and b are set types.

Functions of a known arity. Downen et al. [2019] introduce a new function form { useful

for denoting the final, runtime arity of a function, without any currying. Knowing how many

arguments a function takes at runtime is critical for efficient function calls. But we must be careful:

a polymorphic higher-order function that takes an argument of type a { b is allowed, but only if

b is not a function. By treating{ as a partial type constructor, we can easily and compositionally

maintain this tricky invariant.

2.2 Impact of Ignoring Partiality
The failure to provide full support for partial type constructors has significant costs that impact the

practice of writing code and complicate the underlying language metatheory, in several ways:

Abstraction. Because they are not properly supported by current languages, partial type con-

structors do not work well in combination with other important features or abstractions. For

example, the inability to define certain type constructors, such as UArray or Set, as instances of
standard type classes like Functor or Monad has been an almost constant source of frustration

for Haskell programmers. Evidence for this appears in many forms, from informal requests and

queries in online discussions, to several proposals for extensions to Haskell to address this specific

shortcoming [Hughes 1999; Orchard and Schrijvers 2010; Sculthorpe et al. 2013].

Error reporting. Skeptics may argue that types like UArray Integer are at best a minor annoy-

ance: they pose no immediate threat to type safety. However, developers already rely on types to

identify and prevent common forms of programming error—even kind checking itself is unnecessary

to assure type safety. Supporting partial type constructors would allow us to report errors earlier,

upon, say, spotting UArray Integer instead of reporting an error only when some function tries

to populate that type.

Technical foundations and limitations. A proper accounting of partiality requires great care. What

does it mean, for example, to instantiate a polymorphic type scheme at a type of the form F t when
the latter only exists for certain choices of t? We point to work on injective type families [Stolarek
et al. 2015] as an example where the designers of a language feature were able to avoid such

complications by treating type families as total, but then, to avoid contradictions, were forced to

impose syntactic restrictions that prevent it from being used in some practical applications [Morris

and Eisenberg 2017, Section 3.3].

3 LANGUAGE DESIGN FOR PARTIAL TYPE CONSTRUCTORS
3.1 Datatype Contexts in Haskell
The syntax for datatype definitions in Haskell includes a feature that, at first glance, seems to have

been designed specifically for the purpose of supporting partial type constructors like UArray. In
particular, Haskell allows definitions of algebraic datatypes to include type class constraints that

specify restrictions on how their parameters can be instantiated. The following example illustrates

the concrete syntax for this, using an IArray a constraint at the start of the definition to suggest

that any parameter of the UArray type constructor must be an instance of the IArray class, and
hence must have an unboxed representation:

, Vol. 1, No. 1, Article . Publication date: September 2019.

6 Mark P. Jones, J. Garrett Morris, Richard A. Eisenberg, and Apoorv N. Ingle

data IArray a ⇒ UArray a = MkU . . .

However, following the actual definition in the Haskell Report [Marlow 2010, Section 4.2.1], the

IArray a constraint shown here is interpreted by associating it with operations on UArray values

rather than the UArray type itself, and this fails to give the behavior that we want from a partial

type constructor. For example, even with the above definition, the type UArray Integer is still

accepted as valid and can be used in other types, such as UArray Integer → UArray Integer,
even though Integer is not an instance of the IArray class.

With the definition in the Haskell Report, the presence of an IArray a constraint in the type

definition does not itself provide a proof of this constraint in functions that work with unboxed

arrays. For example, it is not possible to define a working map function of the following type; the

type makes the impossible demand for a fully polymorphic implementation that will work with all

combinations of a and b:

mapUArray :: (a → b) → UArray a → UArray b

Instead, the programmer is forced to insert explicit IArray constraints as part of the type:

mapUArray :: (IArray a, IArray b) ⇒ (a → b) → UArray a → UArray b

Similar difficulties arise in constructing monadic embeddings of domain-specific languages. These

embeddings may rely on limiting the range of possible values, such as by requiring that values be

serializable, or meet some other domain-specific criteria. However, while deep embeddings can

capture such constraints, using GADTs [Cheney and Hinze 2003; Xi et al. 2003], the resulting types

do not fit the standard notion of monad (because they require restrictions on the type of return).
Judging from both recurring postings and complaints and from the research effort surrounding this

problem [Orchard and Schrijvers 2010; Sculthorpe et al. 2013], many Haskell programmers have

been frustrated and confused by the inability of the language to support such examples.

3.2 A Constraint for Well-Formed Applications
The partiality we seek to tame arises when one type is applied to another. We thus wish to use

a predicate to specify when one type is applicable to another, and we write this as an infix @.

Intuitively, f @ a holds when its right-hand argument is a valid parameter for the constructor in its

left-hand argument. When f is a known type constructor (like List or UArray), we replace f @ a
with the constraints (if any) in the datatype context of f’s declaration. For example, List @ a
holds for any type a, because the List type constructor is total (declared without constraints), but

the constraint UArray @ Integer does not hold because the argument type on the right of the

@ symbol is not an instance of the IArray class. We need to preserve @ constraints in the types

of polymorphic functions where the definedness of type expressions depends on the quantified

variables. The elem function on lists does not need an @ constraint in its type

elem :: Eq a ⇒ a → List a → Bool

but we must capture the fact that UArray is partial in the types of polymorphic unboxed array

operations:

arrayElem :: (UArray @ a, Eq a) ⇒ a → UArray a → Bool

While the UArray @ a constraint is formally necessary, it is also implied by the structure of

the type: occurrences of the type UArray a must always be guarded by UArray @ a predicates.
We can take advantage of this to automatically elaborate such constraints, rather than requiring

programmers to write them explicitly; we give our elaboration function in Section 4.2. Interestingly,

this process does not remove the need for all such explicit constraints: see Section 6.2 for further

exploration. Using this elaboration, we would be able to write

, Vol. 1, No. 1, Article . Publication date: September 2019.

Partial Type Constructors (extended version) 7

arrayElem :: Eq a ⇒ a → UArray a → Bool

making it fully parallel with the list elem operation.

We can see further advantages of fully embracing partial type constructors as part of the type

system when we consider higher-order abstractions. One of the biggest advantages of accepting

partiality in the type language is that it allows us to accommodate partial type constructors in

abstractions that were originally designed with only total type constructors in mind. To see why,

recall the mapping function for unboxed arrays

mapUArray :: (IArray a, IArray b) ⇒ (a → b) → UArray a → UArray b

With our approach, we could rewrite this type to rely on the partiality of UArray:

mapUArray :: (UArray @ a, UArray @ b) ⇒ (a → b) → UArray a → UArray b

These types (and indeed the type that omits the definedness constraints entirely) are all considered

equivalent in our system—we neither require programmers to write out definedness constraints,

nor penalize them for doing so. We could not use this function to make UArray an instance of

Functor in Haskell today, as the type of fmap:

fmap :: Functor f ⇒ (a → b) → f a → f b

must work on arbitrary a and b.
However, our system provides a uniform approach for code that abstracts over type constructors

to reflect the possibility that those type constructors may be partial. The Functor class, for example,

would have the following definition:

class Functor f where

fmap :: (f @ a, f @ b) ⇒ (a → b) → f a → f b

Again, the @ constraints here are required by the structure of the type, and could be omitted by

the programmer. With this definition, we can see that mapUArray is a candidate for fmap, and the

following instance would be accepted:

instance Functor UArray where

fmap = mapUArray

The f @ a and f @ b constraints in the type of fmap are sufficient to assure that a and b are

unboxed types, and so we can use mapUArray to implement fmap.
A common weakness in several of the previous solutions to this problem is that they require

some modification to the original definition of the Functor class, such as adding an extra con-

straint [Hughes 1999], or an extra class parameter or associated type [Orchard and Schrijvers 2010;

Sculthorpe et al. 2013]. The problem here is that it is always very difficult for any programmer

to anticipate fully how the code they write might be extended by later development work. If the

original developer does not include appropriate ‘hooks’ to enable such extensions, then subsequent

developers may be forced to modify the additional definitions, and then have to make patches to

other parts of the code that had been working properly until the modifications were made. Our

approach can also be seen as relying on a modification of the original Functor class definition to

include the extra constraints seen above. A key difference, however, is that these constraints are

included automatically as an inherent part of the structure and that they then function as generic

hooks for future extensions, without committing to any specific application or use.

, Vol. 1, No. 1, Article . Publication date: September 2019.

8 Mark P. Jones, J. Garrett Morris, Richard A. Eisenberg, and Apoorv N. Ingle

3.3 Consequences of Partial Type Constructors
Although we tend to focus on technical details, a change in the interpretation of type expressions

also has some more human implications because it requires programmers to make adjustments

in the ways that they think about and write code. As with any new language feature, practicing

programmers are unlikely to adopt a new type system if it seems unintuitive, or does not appear

to offer benefits over its predecessor. With the type system described in this paper, for example,

programmers will need to make subtle distinctions between type expressions like a → List a and
a → UArray a; even though they have essentially the same syntactic structure, the first makes

sense for any choice of type a, while the second is only valid when a has an unboxed representation.

More concretely, a language with partial type constructors changes the way programmers

must think about substitution. If we see a type forall a. a → F a (for some F), it is tempting

to think that the existence of this type implies that, say, Integer → F Integer is also a type.

Yet, in the presence of partial type constructors, this is not true. Our elaboration function would

change the original type to forall a. F @ a ⇒ a → F a, which is telling: now we see that

Integer → F Integer should be possible only when F @ Integer holds. Programmers, of

course, work in the language before elaboration, so they must now be aware that substitution is

not as simple as they might naïvely think.
5

However, we are optimistic that most programmers will adapt to these changes quite easily.

One reason is that programmers already rely heavily on documentation and navigation tools to

provide quick access to relevant information about the code they are working on; at some level, it is

impossible to do useful work involving any type without some means to discover and understand

the operations that it supports. Another reason is that several kinds of partial type constructors

have found their way into practical use, in the form of language features such as GADTs [Cheney

and Hinze 2003; Xi et al. 2003] and type functions [Chakravarty et al. 2005; Schrijvers et al. 2008],

so many programmers have already become accustomed to working with them.

4 A THEORY OF PARTIAL TYPE CONSTRUCTORS
Having laid out a high-level, user-facing approach to partial type constructors, we now formalize

our work in order to give our design a precise semantics. We begin with Jones’s [1994] theory of

qualified types to provide an account of predicates in types. We extend his system in two directions.

First, we extend the typing of expressions to account for the partiality of type constructors; our

key novelty here is qualified kinding, accounting for the role of predicates in types just as qualified

typing accounts for the role of predicates on types. Second, we describe the interaction between

datatype declarations and well-definedness constraints: when type declarations are themselves

well-defined, how definedness axioms are inferred from type declarations, and how they are used

in the typing of terms.

4.1 Type System Foundations
The qualified types system from Jones [1994] provides a general framework for describing predicates
in types, which limit the instantiation of type variables. While the most common application

of qualified types is undoubtedly type classes, qualified types have also been used to capture

applications from subtyping [Jones 1994] to various record systems [Gaster and Jones 1996; Morris

and McKinna 2019]. These applications, however, have considered the use of predicates only to

constrain the polymorphism of terms, not to constrain the construction of types. Our approach

will need to make more fundamental extensions to the base system of qualified types.

5
This subtlety around substitution is only in the surface language before elaboration. Accordingly, it does not imperil any

formal results about the language, which are phrased in the elaboration or compilation target languages.

, Vol. 1, No. 1, Article . Publication date: September 2019.

Partial Type Constructors (extended version) 9

Kinds κ ::= ⋆ | κ1 → κ2
Types τ ::= α | C | τ1 τ2
Predicates π ::= Lτi | τ1 @ τ2
Qualified types ρ ::= τ | π ⇒ ρ
Type schemes σ ::= ρ | ∀α :κ .σ
Expressions E ::= x | E1 E2 | λx .E

| let x = E1 in E2

Predicate constants L ::= . . .
Type constructors C ::= (→) | . . .
Type variables α ::= . . .
Term variables x ::= . . .
Kinding environments ∆ ::= ϵ | ∆,α :κ
Typing environments Γ ::= ϵ | Γ, x:σ
Predicate environments P,Q ::= ϵ | P, π

P | ∆ ⊢ σ : κ

α :κ ∈ ∆
(kvar)

P | ∆ ⊢ α : κ

C : κ
(kconst)

P | ∆ ⊢ C : κ

P | ∆ ⊢ τ1 : κ1 → κ2
P | ∆ ⊢ τ2 : κ1 P ⊢⊢ τ1 @ τ2

(kapp)

P | ∆ ⊢ τ1 τ2 : κ2

P | ∆ ⊢ π pred P, π | ∆ ⊢ ρ : ⋆
(k-⇒)

P | ∆ ⊢ π ⇒ ρ : ⋆

P | ∆,α :κ ⊢ σ : ⋆
(k-∀)

P | ∆ ⊢ ∀α :κ .σ : ⋆

P | ∆ ⊢ π pred

P | ∆ ⊢ τ1 : κ1 → κ2 P | ∆ ⊢ τ2 : κ1
P | ∆ ⊢ τ1 @ τ2 pred

L : κi → pred P | ∆ ⊢ τi : κi
P | ∆ ⊢ Lτi pred

∆ ⊢ P

∆ ⊢ ϵ

∆ ⊢ P P | ∆ ⊢ π pred

∆ ⊢ P, π

P | ∆ ⊢ Γ

P | ∆ ⊢ ϵ

P | ∆ ⊢ Γ P | ∆ ⊢ σ : ⋆

P | ∆ ⊢ Γ, x:σ

P | ∆ ; Γ ⊢ E : σ

(x:σ) ∈ Γ
(var)

P | ∆ ; Γ ⊢ x : σ

P | ∆ ; Γ ⊢ E1 : σ P | ∆ ; Γ, x:σ ⊢ E2 : τ
(let)

P | ∆ ; Γ ⊢ let x = E1 in E2 : τ

P | ∆ ; Γ ⊢ E1 : τ1 → τ2 P | ∆ ; Γ ⊢ E2 : τ1
(→E)

P | ∆ ; Γ ⊢ E1 E2 : τ2

P | ∆ ; Γ, x:τ1 ⊢ E : τ2 P | ∆ ⊢ τ1 → τ2 : ⋆
(→I)

P | ∆ ; Γ ⊢ λx .E : τ1 → τ2

P | ∆ ; Γ ⊢ E : π ⇒ ρ P ⊢⊢ π
(⇒E)

P | ∆ ; Γ ⊢ E : ρ

P, π | ∆ ; Γ ⊢ E : ρ P | ∆ ⊢ π pred
(⇒I)

P | ∆ ; Γ ⊢ E : π ⇒ ρ

P | ∆ ; Γ ⊢ E : ∀α :κ .σ P | ∆ ⊢ τ : κ
(∀E)

P | ∆ ; Γ ⊢ E : [τ/α]σ

P | ∆,α :κ ; Γ ⊢ E : σ
(∀I)

P | ∆ ; Γ ⊢ E : ∀α :κ .σ

Fig. 1. Syntax, kinding, and typing for partial type constructors

The syntax of types and terms is given at the top of Figure 1; it is standard for qualified type

systems. We add applications of (@) to the set of predicates, which otherwise contains applied

predicate symbols L. The set of type constructors C contains at least the function type constructor

(→). We will assume the Barendregt convention in the construction of terms and types, so that all

variables appearing in environments ∆, Γ are distinct.

, Vol. 1, No. 1, Article . Publication date: September 2019.

10 Mark P. Jones, J. Garrett Morris, Richard A. Eisenberg, and Apoorv N. Ingle

The center of Figure 1 gives our qualified kinding relation P | ∆ ⊢ σ : κ. This is the first novelty
of our type system: unlike standard kinding relations, which need only track the kinds of type

variables ∆, we also track a predicate context P . The predicate context comes into play in two

kinding rules.

• Rule (k-⇒), for qualified types π ⇒ ρ, adds π to the context. We require both that π itself

is well-formed, and that with π in context ρ is well-formed. As a consequence, the order of

predicates in qualified types matters: the judgment

ϵ | ϵ ⊢ ∀α :⋆→ ⋆.α @ Int⇒ Eq (α Int) ⇒ α Int : ⋆

is derivable, whereas the judgment with interposed predicates

ϵ | ϵ ⊢ ∀α :⋆→ ⋆.Eq (α Int) ⇒ α @ Int⇒ α Int : ⋆

is not. While this is somewhat unusual for qualified types system, it is perfectly consistent

both with the existing theory and with several of its applications [Jones 1993].

• Rule (kapp), for type applications τ1 τ2, uses the predicate context in showing that type

constructor τ1 is defined at τ2. To do so we rely on the entailment relation · ⊢⊢ ·, which we

will describe later in this section.

The other rules are all standard.

Figure 1 includes judgments to check formation of predicates (P | ∆ ⊢ π pred), and to predicate

(∆ ⊢ P) and typing (P | ∆ ⊢ Γ) environments. As for type constructors, we assume an assignment

of predicate constants L to kinds of the form κ → pred; for example, we would expect that

Ord : ⋆→ pred or MonadState : ⋆→ (⋆→ ⋆) → pred. As predicates are checked via a judgment

separate from that of types, we do not incorporate predicates into the partiality mechanism. Doing so

would not pose significant technical difficulty. However, as predicates may already be unsatisfiable,

adding partiality to predicate construction seems to add little expressiveness.

The typing relation is given at the bottom of Figure 1. There are two significant differences from

existing systems. In (∀E), as usual, we confirm that the instantiating type is well-kinded; given our

extension of kinding, however, this also ensures that type applications in the instantiating type are

well-defined. In (→I), we confirm that the resulting function type is well-kinded, and so also that

type applications in the domain and codomain are defined. The remaining rules are standard for

qualified types.

The key formal guarantee provided by our type system is that the typing of terms respects partial

type constructors. As the latter is built into the qualified kinding relation, we have the following:

Theorem 1 (Regularity). If ∆ ⊢ P, P | ∆ ⊢ Γ, and P | ∆ ; Γ ⊢ E : σ , then P | ∆ ⊢ σ : ⋆.

The proof is by induction on the derivation of P | ∆ ; Γ ⊢ E : σ ; details are given in the appendix,

along with proofs of other theorems we present in the text.

4.2 Elaborating Types
Our type system may seem to require that polymorphic functions be annotated with an unwieldy

and unintuitive set of constraints. For example, for fmap’s type to be well-kinded it must mention

several definedness predicates:

∀f :⋆→ ⋆.∀a:⋆ .∀b:⋆ .(Functor f , f @ a, f @ b) ⇒ (a→ b) → f a→ f b

These definedness predicates may seem obvious: as the type application f a appears in the type,

is it also necessary to mention the predicate f @ a? We suggested in the previous section that

such predicates might be inferred in an implementation of partial type constructors. We will now

characterize formally how such inference could be done.

, Vol. 1, No. 1, Article . Publication date: September 2019.

Partial Type Constructors (extended version) 11

∆ ⊢u σ : κ ∆ ⊢u π pred ∆ ⊢u P

α :κ ∈ ∆

∆ ⊢u α : κ

C : κ

∆ ⊢u C : κ

∆ ⊢u τ : κ ′→ κ ∆ ⊢u τ
′
: κ ′

∆ ⊢u τ τ
′
: κ

∆ ⊢u π pred ∆ ⊢u ρ : ⋆

∆ ⊢u π ⇒ ρ : ⋆

∆,α :κ ⊢u σ : ⋆

∆ ⊢u ∀α :κ .σ : ⋆

L : κi → pred ∆ ⊢u τi : κi

∆ ⊢u Lτi pred

∆ ⊢u ϵ

∆ ⊢u P ∆ ⊢u π pred

∆ ⊢u P, π

ρ ↪→ P

α ↪→ ϵ C ↪→ ϵ

τ1 ↪→ P1 τ2 ↪→ P2
τ1 τ2 ↪→ P1, P2, τ1 @ τ2

π ↪→ P1 ρ ↪→ P2
π ⇒ ρ ↪→ P1, P2

π ↪→ P

τi ↪→ Pi

Lτi ↪→ Pi

σ ↪→ σ ′

ρ ↪→ P

∀α :κ .ρ ↪→ ∀α :κ .P ⇒ ρ

σ ↪→ σ ′

∀α :κ .σ ↪→ ∀α :κ .σ ′

Fig. 2. Elaborating definedness constraints

We begin by defining a version of the kinding relation, written ⊢u, which is unaware of definedness

constraints. We do so by eliminating the use of the definedness constraint in (kapp), and, as they no

longer play any role, eliminating the predicate contexts P . The resulting kinding rules are shown at

the top of Figure 2. This new relation reflects the expectation of current functional languages: all

type constructors are assumed to be total, and so the kinding relation need only check the kinds of

type constructors. We can relate derivations in the unaware and full kinding relations.

We now define an elaboration relation σ ↪→ σ ′ on type schemes, shown at the bottom of Figure 2.

The elaboration relation on base types and qualified types ρ ↪→ P collects the definedness predicates

implied by the type structure of ρ, which are then added to the existing qualifiers for type schemes.

(We write P1, P2 to denote the concatenation of predicate sequences P1 and P2.)
We can use elaboration to connect the unaware and full kinding relations. Intuitively, if the

kinds in a type match, then we can invent the definedness constraints necessary to make the type

well-kinded.

Theorem 2. If ∆ ⊢u σ : κ and σ ↪→ σ ′ then ϵ | ∆ ⊢ σ ′ : κ.

This theorem does not guarantee that the constraints in the elaborated type will be satisfiable. For

example, our intuition is that the type UArray Integer is undefined. The elaboration of this type,

UArray @ Integer ⇒ UArray Integer

does not make this type any better defined; it simply makes explicit the unsatisfiable constraint

implied by the original type expression. Nor does the elaboration relation mean that programmers

will never need to write definedness constraints explicitly. Terms may include type instantiations

that are not reflected directly in their types, but whose definedness must still be ensured. However,

it does suggest that, in the majority of cases, the requisite definedness conditions can be computed

automatically. We evaluate the effectiveness of this approach empirically in Section 6.

, Vol. 1, No. 1, Article . Publication date: September 2019.

12 Mark P. Jones, J. Garrett Morris, Richard A. Eisenberg, and Apoorv N. Ingle

Data constructors K ::= . . .

Datatype declarations D ::= data P ⇒ C α :κ = K τ

⊢ D

αi:κi ⊢ wft(C αi), P wft(C αi), P | αi:κi ⊢ τjk : ⋆

⊢ data P ⇒ C αi:κi = Kj τjk

⊢u D

αi:κi ⊢u P αi:κi ⊢u τjk : ⋆

⊢u data P ⇒ C αi:κi = Kj τjk

D ↪→ P

P ′ ↪→ P τjk ↪→ Pjk P ′′ = {π | π ∈ P, Pjk ∧ π < wft(C α)}

data P ′⇒ C α :κ = Kj τjk ↪→ P ′′

Fig. 3. User-defined datatype validation and elaboration

4.3 User-Defined Datatypes
We have described how definedness constraints are propagated through the types of expressions,

and how they can be elaborated from type expressions. Next, we turn to the initial source of

definedness constraints: user-defined datatypes.

Our first problem is validating datatype declarations themselves: a datatype cannot be more

defined than the data it stores. We give the syntax of partial datatype declarations in Figure 3: a

datatype declaration combines a predicate context P with the usual type arguments and constructor

types. We characterize valid datatype declarations with the judgment ⊢ D. This requires that the
context P be well-formed; that the P be sufficient to justify that each constructor argument has

kind ⋆; and that any type application in constructor arguments is well-defined.

Recursive datatypes pose a small challenge. Consider the classic datatype fixed point declaration:

data Fix f = In (f (Fix f))

Under what constraints should we consider Fix f to be well-defined? The application f (Fix f)
must be defined, but this seems to presuppose that Fix f is already well-defined. Our approach

is to assume that new datatypes are well-defined in their own definitions.
6
In checking ⊢ D, we

extend the declared predicates P with an additional set of constraints, abbreviated wft(τ) for “well-
formed type”, asserting that C α is well-defined. The abbreviation wft(τ) is defined by ordered

pattern-matching on these equations:

wft(τ τ ′) = wft(τ),wft(τ ′), τ @ τ ′ wft(τ) = ϵ

With this definition, the only predicate needed for the definition of Fix to be well defined is

f @ Fix f .
We can elaborate datatype declarations to include routine definedness constraints. Datatype

declaration elaboration D ↪→ P proceeds by elaborating the declared context P and the types

appearing in the constructors. The final elaborated predicate excludes any predicates arising from

recursive instances of the datatype being defined. As in elaborating types, the elaborated constraints

are sufficient to ensure that datatype declarations are well-formed.

6
That is, we use a greatest fixed point model of the definedness relation (@). This choice affects only our type language and

is independent of Haskell’s choice to have lazy runtime semantics.

, Vol. 1, No. 1, Article . Publication date: September 2019.

Partial Type Constructors (extended version) 13

π ∈ P
P ⊢⊢ π

P ⊢⊢ Qi

P ⊢⊢ Q
P1 ⊢⊢ P2 P2 ⊢⊢ P3

P1 ⊢⊢ P3

P ⇒ C α1 . . . αn β1 . . . βm ∈ D P ′ = {π ∈ P | fv(π) ⊆ αi}

D ◃ C τ1 . . . τn−1 @ τn ⊣⊢ [τi/αi]P ′

Fig. 4. Entailment

Theorem 3. If ⊢u data P ⇒ C α :κ = K τ and data P ⇒ C α :κ = K τ ↪→ P ′, then ⊢ data P ′, P ⇒
C α :κ = K τ .

The proof follows from Theorem 2. However, the consequences of this theorem are stronger. As

there is no source of definedness constraints in datatype declarations other than those discovered

by elaboration, the user must only ever add constraints if they are not implied by the components

of the datatype being defined.

4.4 Entailment
The entailment relation captures relationships between predicates, and plays a central role in any

qualified type system. In our system, we have seen that entailment plays a central role in both

kinding (kapp) and typing (⇒E). We now describe the entailment rules for definedness constraints.

As with other applications of qualified types, we do not assume that this is the only entailment

rule; others could be included to support type classes, extensible records, and so on.

Our entailment relation for definedness constraints is given in Figure 4. Entailment is defined in

the context of a set of datatype declarations D; however, as this context is constant in the course

of any derivation, we generally write P ⊢⊢ Q for D ◃ P ⊢⊢ Q. Intuitively, given the following three

definitions:

data Either a b = Left a | Right b

data Ord a ⇒ BST a = Empty | Fork a (BST a) (BST a)

data (Ord a, Ord b) ⇒ OrdPair a b = . . .

we would generate the following collection of entailment rules:

P ⊢⊢ Either @ a
P ⊢⊢ Either a @ b

P ⊢⊢ Ord a ⇐⇒ P ⊢⊢ BST @ a
P ⊢⊢ Ord a ⇐⇒ P ⊢⊢ OrdPair @ a

P ⊢⊢ Ord a ∧ P ⊢⊢ Ord b ⇐⇒ P ⊢⊢ OrdPair a @ b
for any choices of types a and b. This is captured by the final rule in Figure 4. Suppose that we have

a predicate C τ1 τ2 . . . τn−1 @ τn, and that the corresponding datatype declaration is of the form

data P ⇒ C α1 . . . αn β1 . . . = K τ

Let P ′ be those predicates in P that restrict only the αi. The predicate holds (that is, the type

application C τ1 . . . τn is defined) exactly when (the substitution instances of) P ′ hold. This includes
the treatment of total parameterized datatypes as a special case with P = ∅: hypotheses are vacuous,
and so the definedness predicate always holds.

The theory of qualified types places several requirements on the entailment relation [Jones 1994].

Lemma 4 (Properties of entailment).

(1) Monotonicity: If P ⊢⊢ π then P, P ′ ⊢⊢ π

, Vol. 1, No. 1, Article . Publication date: September 2019.

14 Mark P. Jones, J. Garrett Morris, Richard A. Eisenberg, and Apoorv N. Ingle

Kinds κ ::= s | (α :κ1) → κ2 | (δ :π) ⇒ κ
Types τ , π ::= C | α | τ1 τ2 | τ υ

| ∀α :κ .τ | (δ :π) ⇒ τ
Evidence υ ::= δ | ♦ | . . .
Expressions E ::= x | λx:τ .E | E1 E2 | λδ :π .E

| Eυ | Λα :κ .E | E τ

Type constants C, L ::= (→) | ⊤κ | . . .
Type vars α, ℓ ::= . . .
Evidence vars δ ::= . . .
Term vars x ::= . . .
Sorts s ::= ⋆ | o
Kinding env’s ∆ ::= ϵ | ∆,α :κ | ∆, δ :π
Typing env’s Γ ::= ϵ | Γ, x:τ

∆ ⊢i κ kind

∆ ⊢i s kind

∆ ⊢i κ1 kind ∆,α :κ1 ⊢i κ2 kind

∆ ⊢i (α :κ1) → κ2 kind

∆ ⊢i π : o ∆, δ :π ⊢i κ kind

∆ ⊢i (δ :π) ⇒ κ kind

∆ ⊢i τ : κ

C : κ

∆ ⊢i C : κ

α :κ ∈ ∆

∆ ⊢i α : κ

∆ ⊢i τ1 : (α :κ1) → κ2 ∆ ⊢i τ2 : κ1

∆ ⊢i τ1 τ2 : [τ2/α]κ2

∆ ⊢i τ : (δ :π) ⇒ κ ∆ ⊢i υ : π

∆ ⊢i τ υ : [υ/δ]κ

∆ ⊢i κ kind ∆,α :κ ⊢i τ : s

∆ ⊢i ∀α :κ .τ : s

∆ ⊢i π : o ∆, δ :π ⊢i τ : s

∆ ⊢i (δ :π) ⇒ τ : s

∆ ⊢i υ : π ∆; Γ ⊢i E : τ E1 −→ E2

δ :π ∈ ∆

∆ ⊢i δ : π

∆ ⊢i ⊤κ τi : o

∆ ⊢i ♦ : ⊤κ τi
· · · (elided) (elided)

Fig. 5. The internal language

(2) Cut: If P ⊢⊢ π1 and P, π1 ⊢⊢ π2 then P ⊢⊢ π2.
(3) Closure under substitution: If S is some well-kinded substitution, and P ⊢⊢ π , then S P ⊢⊢ S π .

The proofs of these properties for our entailment relation are unsurprising.

5 MAKING PARTIALITY EXPLICIT
We have presented the details of a surface language supporting partial type constructors, including

an elaboration process for inserting routine definedness constraints. But we must still be cautious:

this system is a departure from our usual understanding of type constructors, a fundamental concept

in typed functional programming languages. We wish to be sure it has reasonable runtime behavior

and is compilable using standard techniques. This section presents an internal language, inspired

by System F, into which our surface language compiles. We prove that this internal language is

type-safe (by the usual progress and preservation theorems [Wright and Felleisen 1994]) and that

compilation from our surface language preserves typability.
7

7Elaboration is distinct from compilation. Elaboration adds necessary definedness constraints in the source language; the

process takes a source program and returns another source program. Compilation, on the other hand, translates from a

source language with partiality and definedness constraints into an internal language with neither.

, Vol. 1, No. 1, Article . Publication date: September 2019.

Partial Type Constructors (extended version) 15

5.1 Internal Language Syntax and Semantics
This internal language is laid out in Figure 5. The key difference between the surface language and

this internal language is that the internal language uses explicit evidence to prove predicates. This

follows from the long-standing dictionary translation of qualified types [Jones 1994]. Evidence

terms υ prove both standard predicates Lτi and also definedness constraints τ1 @ τ2. Evidence can
be abstracted over; δ is the metavariable for evidence variables. The trivial evidence ♦ proves the

trivial predicate ⊤κ of kind κ, and we allow for the possibility of further evidence forms, echoing

the possibility of expanding the entailment relation of Section 4.4.

This internal language also merges the grammars of types and predicates and includes two sorts

s: ⋆ and o.8 As we will see, the internal language needs to abstract over predicates, and thus we

promote o to be a kind, alongside ⋆. Kinds also include dependent functions over both types and

predicates. Types are System F types, extended with quantification over predicates and evidence

application. Terms are standard for an evidence-bearing translation of a qualified type system. The

typing rules for this language are unsurprising; note, in particular, that the type application rule

is entirely standard—type applications are total in our internal language. Term typing rules and

runtime operational semantics are also standard; they appear in our appendix.

The key to understanding the connection between our surface language and this internal language

is that we represent surface language partiality by constraints in kinds in the internal language.

For example, recall UArray :: ⋆ → ⋆, but with the partiality condition UArray @ a defined as

IArray a. In the internal language, we get UArray : (α :⋆) → IArrayα ⇒ ⋆. That is, UArrayτ
has kind ⋆ only when we can supply evidence that IArrayτ holds. This encoding of partiality via

constraints in kinds is why we need dependent functions in our language.

Our internal language is type safe:

Definition 5 (Values). The three abstraction forms of expressions E are considered values. Other
expression forms are not values.

Theorem 6 (Preservation). If ∆; Γ ⊢i E : τ and E −→ E′, then ∆; Γ ⊢i E′ : τ .

Theorem 7 (Progress). If ∆; ϵ ⊢i E : τ , then either E is a value or there exists E′ such that E −→ E′.

This internal language is not a final compilation target. It is meant as an intermediate language,

where a complete compiler might perform optimizations with the extra security of being able to

check that these optimizations respect types. In this way, our language plays a very similar role to

System FC [Sulzmann et al. 2007], used as an intermediate language within GHC. In particular, our

design here has no bearing on type erasure: further compilation steps may indeed erase types and

trivial evidence.

5.2 Examples
We can compile surface-language expressions and types into our internal language, converting

partiality constraints as appropriate. This compilation function, presented in full in our appendix,

is intricate. It is best explained by example.

The simplest example is

length :: UArray a → Int

Elaboration of elided definedness constraints converts this to

length :: UArray @ a ⇒ UArray a → Int

equivalent to

8
Following Church [1940] we use the symbol o to classify predicates.

, Vol. 1, No. 1, Article . Publication date: September 2019.

16 Mark P. Jones, J. Garrett Morris, Richard A. Eisenberg, and Apoorv N. Ingle

length :: IArray a ⇒ UArray a → Int

In the internal language, this becomes
9

length : forall (a : ⋆). (d : IArray a) ⇒ UArray a d → Int

Note that we explicitly apply UArray a to the definedness evidence d.
The interesting aspects of compilation arise when we consider abstracting over type variables of

a higher kind. So, we proceed to examine fmap:

fmap :: Functor f ⇒ (a → b) → f a → f b

Elaborating and making quantification explicit, this becomes

fmap :: forall (f :: Type → Type) (a :: Type) (b :: Type).

Functor f ⇒ f @ a ⇒ f @ b ⇒ (a → b) → f a → f b

Compiling yields

fmap : forall (c : ⋆ → o) (f : (a:⋆) → c a ⇒ ⋆) (a : ⋆) (b : ⋆).

Functor c f ⇒ (d1 : c a) ⇒ (d2 : c b) ⇒ (a → b) → f a d1 → f b d2

Here, we see that it is necessary to quantify over a constraint variable c, denoting the definedness

constraint of applying f to a variable. Because f’s kind mentions c, we also must alter the kind of

Functor appropriately. To wit, we have

Functor : (c : ⋆ → o) → ((a:⋆) → c a ⇒ ⋆) → o

We thus apply Functor to c before we can apply it to f.
This translation becomes more intricate as we build more abstraction. Our final example will be

lift :: (MonadTrans t, Monad m) ⇒ m a → t m a

from the monad transformers [Jones 1995a] library. Elaboration and explicit quantification yield

lift :: forall (t :: (⋆ → ⋆) → ⋆ → ⋆) (m :: ⋆ → ⋆) (a :: ⋆).

MonadTrans t ⇒ Monad m ⇒ m @ a ⇒ t @ m ⇒ t m @ a ⇒ m a → t m a

Compiling yields this monster:

lift : forall (ct1 : (cm:⋆ → o) → ((a:⋆) → cm a ⇒ ⋆) → o)
(ct2 : (cm:⋆ → o) → ((a:⋆) → cm a ⇒ ⋆) → ⋆ → o)
(t : (cm:⋆ → o) → (b1:(a:⋆) → cm a → ⋆) → ct1 cm b1 ⇒

(b2:⋆) → ct2 cm b1 b2 ⇒ ⋆)

(mt : ⋆ → o) (m : (a:⋆) → mt a ⇒ ⋆) (a : ⋆).

MonadTrans ct1 ct2 t ⇒ Monad mt m ⇒

(d1 : mt a) ⇒ (d2 : ct1 mt m) ⇒ (d3 : ct2 mt m a) ⇒

m a d1 → t mt m d2 a d3

Because there is no way to know what the definedness constraints are on t and m, we must quantify

over them. Call sites will instantiate these appropriately, using the trivial predicate⊤ if instantiating

with a total type constructor.

, Vol. 1, No. 1, Article . Publication date: September 2019.

Partial Type Constructors (extended version) 17

P | ∆ ⊢ σ : κ {µ τ ;τ ′

P | ∆ ⊢ τ1 : κ1 → κ2 {µ τ
′
1
;τ P | ∆ ⊢ τ2 : κ1 {µ τ

′
2
;τ ′

P ⊢⊢ τ1 @ τ2 {µ υ τ ′′ = [τ0 τ ′ τ
′
2
| τ0 ← tail(τ)]

P | ∆ ⊢ τ1 τ2 : κ2 {µ τ
′
1
τ ′ τ ′

2
υ;τ ′′

P ⊢⊢ π {µ υ

π 7→ δ ∈ µ

P ⊢⊢ π {µ δ

solve(π) { υ

P ⊢⊢ π {µ υ

Fig. 6. Compiling type applications and entailment

5.3 Compiling Types
The fragment of the compilation algorithm concerning types appears in Figure 6. The rest is

included in the appendix; the details of this algorithm are not important for understanding our main

theorem (that deterministic compilation to a total language is possible) or partial type constructors

more generally.

For each compilation judgment, there is a corresponding judgment in the source language with

the same structure. Accordingly, these judgments can be viewed as a function on source typing

derivations. Values to the left of { (and any decorations on a {) are considered inputs, while

values to the right are considered outputs. This function is syntax-directed and deterministic (as

proved by a straightforward induction).

The judgments presented here, along with most others, are parameterized by a compilation
context µ. This contains auxiliary information needed by compilation. Relevant to entailment

compilation are mappings from predicates π to evidence variables δ : a mapping π 7→ δ ∈ µ means

that δ is evidence for π .

Type applications. The type compilation judgment has two outputs: the compiled type τ and

a list of other types τ ′. This list of types should be passed to any type function that will then be

passed the main output type. The intuition here is that the list of types includes the instantiations

for any quantified constraints in the type being compiled. For example, note the extra c argument

in Functor c f in the fmap example: this would be the second return value when compiling f.
Compiling a type application τ1 τ2 naturally begins by compiling τ1 and τ2 separately, yielding τ

′
1

(with τ) and τ ′
2
(with τ ′). Since a precondition of compilation is that the source type is well-formed,

we know P ⊢⊢ τ1 @ τ2 must hold. We thus compile the derivation of that judgment into evidence υ.
We must now assemble the outputs. We cannot simply compile the application τ1 τ2 into τ

′
1
τ ′
2
: if

τ2 is higher-kinded (i.e., has a function kind), then its compiled kind will depend on a definedness

predicate, like the f in the type of fmap. The choice of this definedness predicate must be passed to

τ ′
1
before passing τ ′

2
. In the general case, there may be many such definedness predicates: see how

t in the type of lift depends on both ct1 and ct2. The choices for these predicates are τ ′, the
second return value from compiling τ2. There is still one more wrinkle in assembling the primary

result: since τ1 might be partial, we need to pass evidence that τ1 τ2 is well-defined. This evidence
is the output of compiling the entailment of P ⊢⊢ τ1 @ τ2, which is called υ in the rule. We thus see

that the correct primary result from compiling τ1 τ2 is τ
′
1
τ ′ τ ′

2
υ.

Lastly, we must determine what predicates the kind of τ ′
1
τ ′ τ ′

2
υ depends on. These types, the

τ ′′, are built by a list comprehension. The τ are the predicates free in the kind of τ ′
1
. The first of

these predicates is evidenced by υ; it is no longer free in the kind of τ ′
1
τ ′ τ ′

2
υ. Each of the rest—the

9
We will use Haskell-like syntax in these examples, with the exception that we use only one colon to remind the reader that

we are in an internal language.

, Vol. 1, No. 1, Article . Publication date: September 2019.

18 Mark P. Jones, J. Garrett Morris, Richard A. Eisenberg, and Apoorv N. Ingle

tail of the list τ—must be accounted for in τ ′′. Since we have applied τ ′
1
to τ ′

2
, though, we must do

the same for the predicates: we thus apply τ0 (one element of tail(τ)) to τ ′
2
, but we cannot forget to

insert the τ ′ first. We thus get the definition of τ ′′ as stated in the rule.

Entailment. Compiling an entailment is straightforward in our presentation, as we can invoke a

solver process to produce evidence. The idea here is that our compiler is equipped with a solver

than can produce evidence for all entailed predicates. The two rules can be tried in order: if we

have a predicate assumption (witnessed by the variable δ) in our compilation context µ, use that.
Otherwise, the solver must be able to produce the evidence. The compilation context is extended

with evidence when assuming a constraint in the form π ⇒ ρ (this corresponds to a λ over evidence
in the internal language), which then can be retrieved here.

Other judgments. Compiling type applications is one of the two tricky points in compilation; the

other is in compiling kinds. This should be unsurprising, because the compilation of a function

kind must be intricate enough to support compiling type applications as we have done above. In

the end, we prove that a well-kinded source type compiles into a well-kinded internal language

type, but even a full statement of the lemma would take us too far afield from our primary goal of

discussing partial type constructors.

5.4 Correctness
We have proved compilation correct, stated here for top-level (closed) expressions:

Theorem 8 (Compilation). If ϵ | ϵ ; ϵ ⊢ E : σ {ϵ E′, then ϵ | ϵ ⊢ σ : ⋆{ϵ τ ; ϵ and ϵ ; ϵ ⊢i E′ : τ .

The proof generalizes this considerably, allowing compilation of open terms and non-empty con-

texts; stating that more general theorem would require introducing more technical judgments.

A consequence of this theorem is that we have grounded the theory behind our surface language:

it is merely a decoration over a language with fairly standard static and dynamic semantics. Notably,

this language has total type constructors; the special treatment of partiality is compiled away.

6 EVALUATION: HOWWILL IT WORK IN PRACTICE?
We began this project with a healthy skepticism about its ultimate feasibility. We were concerned

in particular that, while a constraint system seemed reasonable in theory, it might not be usable in

practice if it required large numbers of constraints. In the context of extending an existing language

to support partial type constructors, there will also be concerns about backward compatibility and

about the possibility that substantial portions of existing code will need to be modified or rewritten

to account for the new features.

In an attempt to preempt such problems, we have already described how we can allow con-

straints to be omitted from a program when they are implied directly by other parts of the code.

However, as Hughes [1999] noted in his proposal for restricted datatypes, it is not always pos-

sible to derive the full list of required constraints for a given function just by looking at its

type. For example, a function that sorts an input list by building and then flattening a binary

search tree will require a type (BST @ a) ⇒ List a → List a, or, equivalently in our system,

(Ord a) ⇒ List a → List a. Clearly, there is nothing in the type List a → List a to hint

at a need for either the BST @ a or the Ord a constraints suggested here.

The observations described above raise an important question about the practical feasibility of

the system that we propose in this paper: How often will programmers be required to use extra

annotations, either in new code, or when updating existing code? Ideally, we would hope for a

zero-cost abstraction, meaning, as Stroustrup [1994] put it: “What you don’t use, you don’t pay for.”

, Vol. 1, No. 1, Article . Publication date: September 2019.

Partial Type Constructors (extended version) 19

In our specific case, this means that we would hope not to incur any annotation overhead in code

that does not make use of partial type constructors.

To address this question, we built a simple, proof-of-concept implementation of our design, based

on the Hugs interpreter. We used it to process a collection of 169 Haskell source files that were

taken from the Hugs distribution. This includes the full Hugs Prelude as well as standard libraries

from the from the System, Data, Text, Control, Test, and Language packages, and combines code

from multiple, independent developers who have contributed to the development of Hugs and its

libraries. We focus primarily on library code, because it is highly polymorphic. Because we cannot

discharge a constraint f @ a until we know f, we expect polymorphic code to incur a higher

annotation overhead than monomorphic code. For exactly the same reason, we did not seek out

more application-level code. In total, our sample comprises more than 38,000 lines of code.

Though it supports the partial BST a as a built-in type, our prototype does not include the

ability to define user-defined partial type constructors. Given that our goal is around backward

compatibility of polymorphic code, adding more partial datatypes would not shed more light on

this goal: it is partial type variables we are after, not partial type constants.
Our primary goal was to determine what changes we would need to make in order for this code

to be accepted by our prototype. Naturally, some infelicities in our implementation required that

we made small edits to these files to allow compilation; these changes are not indicative of our

approach and are simply an artifact of the fact that implementation is only a proof-of-concept. We

include details of these changes—and further description of our prototype—in the appendix.

6.1 Implementation Details
As described previously, our prototype implementation was developed as an extension of the Hugs

interpreter, which already includes a type checker for an extended language based on qualified

types. The key changes that we made to add support for well-formedness constraints, as described

in this paper, were as follows.

Definedness predicates. We defined a new, three parameter built-in type class f @ a = r, with a

functional dependency f a → r [Jones 1995b, 2000], corresponding to the definedness constraint

f @ a. The constraint f @ a = r requires that the application f a is well-defined, just as the
two-parameter version f @ a. Additionally, it names the type f a as r. Using this version of the

constraint avoided the need to worry about predicate order, as we can simply use the result r
instead of the type application f a, but does not fundamentally change the meaning of definedness

constraints. As for the two-parameter version, we have instances of @ for any parameters of kinds

κ1 → κ2, κ1, and κ2, respectively, for any kinds κ1 and κ2.

Elaborating type signatures. We modified the type checker to rewrite every type signature in the

input program to include extra constraints, as necessary, to ensure that the type is well-formed. No

constraints are generated for applications of known, total type constructors such as List, Maybe,
and (→), but applications of type variables result in a new constraint.

Entailment. The implementation of type classes in Hugs also relies on a definition of entailment,
as described in Section 4.4. We extended this mechanism in several ways:

• Any predicate of the form f @ a = f a, where f is an application of a known, total type

constructor, can be discharged immediately with no further work. In practice, this often

occurs as the second step of a process where a constraint f @ a = r has previously been

improved by unifying r with f a. In general, however, it is important to treat this process as

two separate steps, either of which may be used independently of the other.

, Vol. 1, No. 1, Article . Publication date: September 2019.

20 Mark P. Jones, J. Garrett Morris, Richard A. Eisenberg, and Apoorv N. Ingle

• The corresponding rule for a partial type constructor like BST is to allow a constraint

BST @ a = BST a to be discharged if the constraint Ord a can be established from the

assumed constraints. Because these constraints are equivalent, we also have the reverse entail-

ment, allowing an Ord a constraint to be discharged if a constraint of the form BST @ a = r
can be established from the assumed constraints. (There is no need to check that r has been

improved to BST a here; that is already the only possible option.)

6.2 Annotation Overhead
Our first finding was that almost all of the Haskell source files in our test set—164 files, to be

precise—are accepted as is by our prototype without the need for any annotations. This provides

good initial evidence that the annotation burden for our system is likely to be low. Annotations were

required, however, in the five remaining files. Unsurprisingly, these all have to do with abstractions

involving higher-kinded type variables: applicative functors, arrows, and monads. For example, the

original version of the Control.Monad library included the following definition:

mapAndUnzipM :: (Monad m) ⇒ (a → m (b,c)) → [a] → m ([b], [c])

mapAndUnzipM f xs = sequence (map f xs) >>= return ◦ unzip

A detail that can be seen in the function body, but not in its type, is that sequence (map f xs)
constructs a value of type m [(b,c)] that is then used as the left argument of the >>= operator. To

document this fact, the type signature for mapAndUnzipM must be modified to include an additional

constraint, as follows:

mapAndUnzipM :: (Monad m, m @ [(b, c)]) ⇒ (a → m (b,c)) → [a] → m ([b], [c])

With this edit, the entire Control.Monad library—which includes numerous definitions of (much

more widely used) general monad operators, such as sequence and mapM—type checks without
any further annotations. Finding and making this edit was also easy: the extra constraint was

identified in the type error message that was generated in response to the original definition of

mapAndUnzipM; after that, it was also easy to understand why an extra constraint was needed.

And this constraint really is needed, with this implementation. Imagine a monad that cannot store

lists, but can store tuples. The implementation of mapAndUnzipM would indeed run into trouble.

Of course, no such monad can exist today, because the Monad class will not allow it. However,

with our approach, we can define a Monad instance over a partial type, and we need to make sure

that (in our hypothetical) our monad is not instantiated with a list type. We thus see the need for

the m @ [(b, c)] constraint as a natural and welcome consequence of our approach: previously

unstated assumptions are now made manifest.

We found similar examples in four other library files: Control.Monad.Reader (1 example);

Data.Foldable (3 examples); Control.Applicative (8 examples); and Control.Arrow (4 exam-

ples). As before, it was easy to identify and understand the need for additional constraints in each

case.

The examples in Data.Foldable (for the functions traverse_, for_, and sequenceA_) were
notable because they each require a constraint of the form f @ (() → ()) for some applicative

functor, f. This is interesting because the type () → () is not generally useful in practical work.

As such, the presence of this constraint may provide useful feedback, perhaps leading to a new

implementation with less plumbing overhead, or to a review of whether these functions are useful

enough in practice to be included in the library.

These experiences were encouraging because they suggest that that the need for annotations

will be relatively low, even in code that abstracts over parameterized type constructors, and must

therefore allow for partiality.

, Vol. 1, No. 1, Article . Publication date: September 2019.

Partial Type Constructors (extended version) 21

We did, however, find one additional example of a function in the Control.Arrow library that

requires additional constraints. The original definition of this function is as follows:

leftApp :: ArrowApply a ⇒ a b c → a (Either b d) (Either c d)

leftApp f = arr ((λb → (arr (λ() → b) >>> f >>> arr Left, ())) | | |

(λd → (arr (λ() → d) >>> arr Right, ()))) >>> app

Although the body of this function is quite compact, it makes heavy use of arrow combinators,

including five uses of arr (which constructs an arrow from a pure function), and three uses of the

arrow composition operator, (>>>). As we dig deeper in to the details of how it works, we also

start to see that it involves quite a few different arrow types. For example, arr (λ() → b) creates
an arrow of type a () b; arr (λ() → d) creates an arrow of type a () d; and so on, with each

of these different arrow types requiring a pair of definedness constraints. When we put all of these

together, the resulting type for leftApp is as follows:

leftApp :: (ArrowApply a,

a () @ b, a () @ c, a () @ d,

a c @ Either c d, a d @ Either c d, a b @ Either c d,

a (Either b d) @ a () (Either c d),

a (a () (Either c d)) @ Either c d)

⇒ a b c → a (Either b d) (Either c d)

The list of constraints shown here is intimidatingly long. Considered individually, however, each of

the constraints is reasonable: in each case, it is easy to find a subexpression in the definition of

leftApp that produces an arrow of the corresponding type and, hence to explain the need for each

constraint.

Overall, while the leftApp example demonstrates that it is possible for a function definition to

require large numbers of constraints, it is also an outlier, and, we believe, not representative of what

can be expected in practical code. In this case, a comment in the Control.Arrow library explains

that leftApp can be used to make an instance of the ArrowChoice type class for any arrow that

is already included in the ArrowApply type class. But leftApp is not actually used anywhere in

the code: there are only two instances of ArrowApply in our code sample, both of which already

have more direct implementations of ArrowChoice. In short, leftApp corresponds to a formal

proof that every instance of one class can be made an instance of another—with some additional

hypotheses reflected by our @ constraints—but inspection of the code shows that it achieves this

in a roundabout way that does not appear to be useful in practice.

Summary. By instrumenting our prototype, we were able to count a total of 1,934 type signatures,

across our full collection of 169 test files. Each of these signatures was checked automatically by the

implementation and 142 of them required additional constraints to ensure well-formedness (with a

total of 345 additional constraints). As described above, there were only 20 type signatures (i.e.,

approximately 1% of the total) that required an additional, programmer-supplied annotation, and all

of these occurred in a small number of library files, all dealing with abstractions over higher-kinded

parameters. Moreover, in each of these examples, the need for extra constraints was identified

automatically and was easy to understand in the context of the associated function definition. From

our perspective, these results provide strong evidence that our proposed type system will not create

an undue burden on programmers. Indeed, two of the language features that are most likely to

stress our type system are polymorphism and parameterization. While these are still useful in the

construction of practical applications, we suspect that they will often not be used as heavily as in

library code—which has been the focus of our evaluation—that is specifically written to encourage

, Vol. 1, No. 1, Article . Publication date: September 2019.

22 Mark P. Jones, J. Garrett Morris, Richard A. Eisenberg, and Apoorv N. Ingle

reuse. As such, we conjecture that an extension of our evaluation to include code from practical

applications will likely show an even smaller annotation overhead than we have reported here.

7 RELATEDWORK
Restricted data types. Hughes [1999] observed thatmany collection types inHaskell were naturally

partial; he focused on sets represented as lists rather than binary search trees, but the issues are

the same. He proposed two approaches to this problem. The first required explicitly capturing

partiality, reifying constraints as dictionaries in class methods. For example, he proposes a class of

collections defined by:

class Collection c ctxt where

empty :: Sat (ctxt a) ⇒ c a

singleton :: Sat (ctxt a) ⇒ a → c a

union :: Sat (ctxt a) ⇒ c a → c a → c a

member :: Sat (ctxt a) ⇒ a → c a → Bool

Here, ctxt would be instantiated by a variable reifying the constraint on type c, capturing an Eq
dictionary for sets or an Ord dictionary for search trees. However, he suggested that these extra

constraints would soon become overwhelming, and that the need for parameterizing classes (such

as Collection) over ctxt would limit their applicability. As an alternative, he introduced wft t
constraints, expressing that type t was well-formed. Following his approach, the Functor class,
for example, would be defined as:

class Functor f where

fmap :: (wft (f a), wft (f b)) ⇒ (a → b) → f a → f b

Hughes argued that wft constraints like those in the definition of fmap above should be written
explicitly, so as to avoid surprising programmers with unexpected restrictions or behavior. However,

Hughes also observed that, in many (but not all) cases, the wft constraints that a given example

requires may be fully determined by the shape of the type to which they are attached. The type for

fmap given above is a good example of this: the need for the two wft constraints to the left of the

⇒ symbol follows immediately from the use of the type applications f a and f b on the right.

The choice between requiring wft constraints to be stated explicitly, or allowing them to be

omitted when they are already implied by context is a language design decision. Twenty years on,

Hughes’ arguments for avoiding programmer surprise—a vote for requiring explicit constraints—

may be tempered by concerns about the burden on programmers for dealing with wft constraints

and about the impact on backward compatibility.

To the best of our knowledge, the approach that Hughes proposed has not been implemented

and experimented with in any practical system. In addition, there are some missing details in the

implementation sketch that he provided—having to do, for example, with partial applications of

type constructors. Nevertheless, we know of no fundamental reason that Hughes’ approach could

not also be made workable.

E-logic. Hughes’ approach has a surprising antecedent: Scott’s [1979] work on undefined terms

in intuitionistic logic. Scott was concerned about the meaning of logical propositions such as

∀a.(1/a) × a = 1. While this may seem intuitively correct, and is derivable in many presentations

of intuitionistic logic, it is unclear what it means if a is instantiated to 0. It would seem to suggest

that the equality 1/0 × 0 = 1 should be derivable, but 1/0 is not defined (and the corresponding

derivation is not included in models of intuitionistic logic). Scott’s solution is to introduce an

existence predicate E(−), and require its use at instantiation of quantifiers. Concretely, in his

approach, the above formula is not derivable, but ∀a.E(1/a) ⇒ (1/a × a = 1) is. The instantiation

, Vol. 1, No. 1, Article . Publication date: September 2019.

Partial Type Constructors (extended version) 23

of a with 0 is no longer a problem because the term 1/0 does not satisfy the existence predicate.

A crucial difference between Scott’s setting and ours is that he considers arbitrary terms, and so

cannot give a more refined characterization of existence. We are working in the more constrained

domain of type applications, and so can further refine the conditions under which type expressions

denote types.

There has been significant further interest in characterizing partial functions in the type theory

and theorem proving communities; for a summary, see Bove et al. [2016]. This work has generally

focused on partiality arising from recursive definitions, however, whereas we focus on functions

undefined on parts of their domain. Our discussion of compilation (Section 5) demonstrates that,

while encoding partial functions in terms of total functions may be intuitively direct, managing

complexity in the resulting types and terms is still challenging.

Datatype contexts in Haskell. This particular feature has an interesting history. In the original

Haskell 1.0 report [Hudak and Wadler 1990, Section 4.1.3], contexts were allowed in both datatype

and type synonym definitions and the intended semantics, explained only informally, was verymuch

in linewithwhatwe propose in this paper: a declaration of the form type c ⇒ T u1 . . . un = . . . ,
for example, “declares that a type (T t1 . . . tn) is only valid where c[t1/u1, . . . , tn/un] holds.”
The report also includes a concrete example, type (Num a) ⇒ Point a = (a,a), and explains

that types like Point a are only valid when they appear in the scope of a context asserting Num a.
This text, however, was removed in the Haskell 1.1 report [Hudak et al. 1991], completely disallow-

ing the use of contexts for type synonyms, and introducing the interpretation for contexts in data

definitions that remains in the current report (i.e., the only effect is to add constraints to constructor

function types). This change appears to have been made in response to a proposal by Peyton Jones

[1991] after an online discussion in which “nobody [was] able to give a satisfactory account of

what contexts in data and type declarations actually mean” (the latter presumably referring to the

lack of either a formal system or a concrete implementation). In 2010, this feature was deprecated

as part of the GHC 7.0.1 release: any programs that use it now require an additional command

line flag to compile. The associated documentation [GHC Team 2017, Section 10.4.2], explains that

“this is widely considered a misfeature, and is going to be removed from the language.” Rather than

eliminate it, however, the approach that we describe in this paper would allow us to reinstate the

feature and at last, with the benefit of nearly three decades of subsequent experimentation and

development, provide a semantics and an implementation for it that matches the vision of the

original Haskell committee.

Encoding partial type constructors in Haskell. Hughes was far from the last author to propose an

encoding of partial type constructors in Haskell. Orchard and Schrijvers [2010] suggest extending

Haskell with constraint kinds, giving a built-in realization of Hughes’ reification of constraints.

They give an encoding of their approach in terms of Kiselyov’s [2007] reduction of Haskell to

one master type class. Sculthorpe et al. [2013] tackle Monad instances for types such as BST. Their
approach is to represent computations in a free monad, realized using a GADT, and validate the

constraints on the underlying type when interpreting the resulting free monad term.

Partial type signatures. A Haskell type signature is meant to stand alone: when we see flurb ::
C f ⇒ a → f a → b → f b, we expect we know everything about the types needed at

flurb’s usage sites. This means that, as observed in Section 6.2, the implementation of flurb
is restricted to only use values of type f a or f b; if the implementation uses a transient value of

f (a, b), that would be rejected, as we do not know that f is defined on tuples.

However, partial type signatures [Winant et al. 2014] change this understanding of a type signa-

ture. (Beware: the “partial” in “partial type signature” refers to missing pieces in the signature, not

, Vol. 1, No. 1, Article . Publication date: September 2019.

24 Mark P. Jones, J. Garrett Morris, Richard A. Eisenberg, and Apoorv N. Ingle

missing parts of the domain of the type. Their use and our use of “partial” are completely orthog-

onal.) With a partial type signature, such as flurb :: (C f, _) ⇒ a → f a → b → f b, a
compiler would infer any constraints necessary from flurb’s implementation and add these to its

type. These constraints naturally would have to be satisfied at usage sites. Inferring them is easy,

as definedness constraints are just like all others, and existing constraint propagation, solving, and

quantification techniques work without modification. One might imagine a compiler setting that

would make all signatures partial in this way, allowing any function’s implementation to extend its

set of constraints. With such a setting, the annotation burden of Section 6.2 would disappear. In

our view, however, the annotations are useful documentation for both the implementor and client,

and we would not advocate for such a compiler option.

Constrained type families. Our approach to supporting partial type constructors is similar to

the approach used by Morris and Eisenberg [2017] to support partiality in type families, called

constrained type families. As with our use of @ constraints to identify the domains of datatypes,

they require each type family F to come with a unique type class, CF, identifying its domain; uses of

type family F ti are then only allowed in contexts where CF ti is provable. This work intersects

theirs in several ways.

Most immediately, adding constraints to type families makes explicit an implicit partiality in

datatype declarations. Suppose that F is a type family; how should the following datatype declaration

be interpreted?

data T a = MkT a (F a)

Clearly, there are only instances of this datatype for parameters a for which family F is defined.
Partial type constructors give the natural realization of this constraint. (Indeed, the same observation

was made during discussion of implementing constrained type families in GHC.
10
)

We could also view constrained type families themselves as instances of partial type constructors,

in which the constraint CF on a type family F is required by the corresponding axioms for @. One

interesting aspect of this direction is that, unlike type constructors, current formulations of type

families do not allow them to be partially applied. (This restriction may soon be lifted [Kiss et al.

2019].) Thus, using @ with type families may require a special case, allowing for the appearance of

an unsaturated type family.

Subtyping and partial types in object-oriented languages. Bounded polymorphism [Cardelli and

Wegner 1985] allows for the instantiation of a type variable only by types that are subtypes of some

other type τ . Modern object-oriented programming languages adopt this feature to good effect.

Notably, Java, C#, and Scala all support datatypes with bounded type parameters. For example, we

can define a Java class

public class BST<A extends Comparable<? super A>> { . . . }

such that an instantiating type of BST must be a subtype of the Comparable interface—that is, it
must have an ordering. This example also demonstrates Java’s support for a limited amount of

contravariance in setting type parameter bounds. The type BST<T> is malformed if T is not a subtype
of Comparable, just like we model in this paper. Though not based on bounded polymorphism,

C++’s concepts [Dos Reis and Stroustrup 2006] similarly restrict the choice of an instantiating type.

There is a key difference, however, between the systems in Java and C# and what we propose here:

our type system allows quantification over partial type constructors. By contrast, the languages

mentioned here are first-order in types: it is impossible to quantify over a parameterized type.

10
https://github.com/ghc-proposals/ghc-proposals/pull/177#issuecomment-431507862, and following

, Vol. 1, No. 1, Article . Publication date: September 2019.

https://github.com/ghc-proposals/ghc-proposals/pull/177#issuecomment-431507862

Partial Type Constructors (extended version) 25

Naturally, it is in dealing with higher-kinded type variables (such as when dealing with functors,

arrows, and monad transformers) that our system’s power becomes clear.

Scala’s implementation of bounded polymorphism does allow quantification over partial type

constructors [Moors et al. 2008] and is a suitable alternative to what we propose here. Naturally,

Scala’s approach fits its object-oriented setting and its reliance on subtyping requires more type

annotations. As usual, subtyping and qualified polymorphism achieve similar goals in different

ways. Recent work on a formal foundation for Scala [Stucki 2017] is based on System Fω<: bears
resemblance to our evidence-carrying internal language, but a detailed comparison of the two

approaches is beyond the scope of this work.

8 FUTUREWORK
The most immediate direction for future work is to implement partial type constructors and

explore their practical utility. To that end, we are adding support for partial type constructors to

an experimental functional language focused on low-level programming; our motivations here

concern expressive abstractions for representing low-level and hardware-defined formats.

Another interesting future direction is to investigate opportunities for defining and working

with overloaded partial type constructors that might be implemented in different ways for different

argument types. In the examples we have written so far, we have assumed that type constructors

were parametric even when not total. As a tantalizing glimpse of an alternative, let us revisit

the function type example from Section 2.1 that suggested mixing pointed and unpointed types,

and using distinct kinds of function arrows to distinguish between continuous functions (of type

a � b) on pointed types and total functions (of type a � b) on unpointed types. But how then

should we interpret a lambda expression like (λx → x)? Of course, this would make sense as a

continuous function of type P � P, for any pointed type P. But it could just as easily be interpreted
as a total function of type U � U for any unpointed type U. One way to keep both options available

would be to add new rules for describing when an application of the standard function space arrow,

(→), is well defined, following the 3-place version of the definedness constraint introduced in

Section 6.1. Specifically, we can support different interpretations of the function type by arranging

for the following:

(→) @ a = (�) a, whenever a is a pointed type; and

(→) @ a = (�) a, whenever a is an unpointed type.

With this approach, the type of the identity function could still be written and presented to

programmers as polymorphic type a → a. Internally, however, it could be interpreted by the type

checker as ((→) @ a = f, f @ a = t) ⇒ t; the first constraint shown here gives us the

ability to choose between different function types, while the second allows for the possibility of

additional constraints on the range type: for example, both parameters of (�) should be unpointed
types. In essence, we have recovered a total type constructor, built out of non-overlapping partial

type constructors. Of course, there are still many details that need to be worked out here, and

we might also begin to worry about a potential explosion in the number of constraints that such

a system will require. Then again, we had much the same concern when we began the project

reported in this paper, but have since found that the system works well in practice.

9 CONCLUSION
We started with a seemingly paradoxical question: when is a type not a type? Surprisingly often, it

turns out: whether it is an unboxed array of boxed values, a binary search tree of incomparable

values, or type family application unmatched by its defining equations. In this paper, we set out to

explore the possibility of using a constraint-based type system as a framework for describing and

, Vol. 1, No. 1, Article . Publication date: September 2019.

26 Mark P. Jones, J. Garrett Morris, Richard A. Eisenberg, and Apoorv N. Ingle

working with partial type constructors. We have developed such a language design, characterized

its formal properties and semantics, and experimentally evaluated its consequences for existing

functional programs. Our approach rules out ill-defined types (such as UArray Integer), allows
abstraction over partial type constructors (such as Functor UArray), and does so with minimal

disruption to programmers.

REFERENCES
Ana Bove, Alexander Krauss, and Matthieu Sozeau. 2016. Partiality and recursion in interactive theorem provers - an

overview. Mathematical Structures in Computer Science 26, 1 (2016), 38–88.
Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. 1998. Making the Future Safe for the Past: Adding

Genericity to the Java Programming Language. In Proceedings of the 1998 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages & Applications (OOPSLA ’98), Vancouver, British Columbia, Canada, October 18-22, 1998.
ACM, Vancouver, British Columbia, Canada, 183–200. https://doi.org/10.1145/286936.286957

Luca Cardelli and Peter Wegner. 1985. On understanding types, data abstraction, and polymorphism. ACM Comput. Surv.
17, 4 (Dec 1985), 471–523.

Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones, and Simon Marlow. 2005. Associated types with class. In

Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages (POPL ’05). ACM,

Long Beach, California, USA, 1–13.

James Cheney and Ralf Hinze. 2003. First-class phantom types. Technical Report TR2003-1901. Cornell University.
Alonzo Church. 1940. A Formulation of the Simple Theory of Types. J. Symb. Log. 5, 2 (1940), 56–68. https://doi.org/10.

2307/2266170

Gabriel Dos Reis and Bjarne Stroustrup. 2006. Specifying C++ Concepts. In Proceedings of the 33rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’06). ACM, New York, NY, USA, 295–308.

Paul Downen, Zachary Sullivan, Zena M. Ariola, and Simon Peyton Jones. 2019. Making a Faster Curry with Extensional

Types. In Proceedings of the 12th ACM SIGPLAN Haskell Symposium (Haskell ’19). ACM, Berlin, Germany.

Benedict R. Gaster and Mark P. Jones. 1996. A Polymorphic Type System for Extensible Records and Variants. Technical
Report NOTTCS-TR-96-3. University of Nottingham.

GHC Team. 2017. GHC User’s Guide Documentation. http://www.haskell.org/ghc/docs/latest/users_guide.pdf.

Paul Hudak, Simon Peyton Jones, and Philip Wadler (Eds.). 1991. Report on the Programming Language Haskell, Version 1.1.
Available from http://haskell.org/definition/haskell-report-1.1.tar.gz.

Paul Hudak and Philip Wadler (Eds.). 1990. Report on the Programming Language Haskell, Version 1.0. Available from

http://haskell.org/definition/haskell-report-1.0.ps.gz.

Brian Charles Huffman. 2012. HOLCF’11: A Definitional Domain Theory for Verifying Functional Programs. Ph.D. Dissertation.
Portland State University, Portland, OR, USA. Advisor(s) Hook, James G. and Matthews, John.

John Hughes. 1999. Restricted Data Types in Haskell. In Proceedings of the 1999 Haskell Workshop. University of Utrecht,

Technical Report UU-CS-1999-28, Paris, France, 83–100.

Mark P. Jones. 1993. Coherence for qualified types. Technical Report YALEU/DCS/RR-989. Yale University.
Mark P. Jones. 1994. Qualified Types: Theory and Practice. Cambridge University Press, Cambridge, UK.

Mark P. Jones. 1995a. Functional Programming with Overloading and Higher-Order Polymorphism. In First International
Spring School on Advanced Functional Programming Techniques (Lecture Notes in Computer Science), Vol. 925. Springer,
Berlin Heidelberg, 97–136.

Mark P. Jones. 1995b. Simplifying and improving qualified types. In Proceedings of the seventh international conference on
Functional programming languages and computer architecture (FPCA ’95). ACM, La Jolla, California, USA, 160–169.

Mark P. Jones. 2000. Type Classes with Functional Dependencies. In Proceedings of the 9th European Symposium on
Programming Languages and Systems (ESOP ’00). Springer-Verlag, Berlin, Germany, 230–244.

Oleg Kiselyov. 2007. Haskell with only one type class. http://okmij.org/ftp/Haskell/Haskell1/Haskell1.txt.

Csongor Kiss, Tony Field, Susan Eisenbach, and Simon Peyton Jones. 2019. Higher-order Type-level Programming in

Haskell. In Proceedings of the ACM SIGPLAN International Conference on Functional Programming (ICFP ’19). ACM, Berlin,

Germany.

John Launchbury and Ross Paterson. 1996. Parametricity and Unboxing with Unpointed Types. In Proceedings of the 6th
European Symposium on Programming Languages and Systems (ESOP ’96). Springer-Verlag, London, UK, UK, 204–218.
http://dl.acm.org/citation.cfm?id=645391.651452

Simon Marlow (Ed.). 2010. Haskell 2010 Language Report. Available online in HTML and pdf formats from https:

//www.haskell.org/documentation.

Adriaan Moors, Frank Piessens, and Martin Odersky. 2008. Generics of a Higher Kind. In Proceedings of the 23rd ACM
SIGPLAN Conference on Object-oriented Programming Systems Languages and Applications (OOPSLA ’08). ACM, New York,

, Vol. 1, No. 1, Article . Publication date: September 2019.

https://doi.org/10.1145/286936.286957
https://doi.org/10.2307/2266170
https://doi.org/10.2307/2266170
http://www.haskell.org/ghc/docs/latest/users_guide.pdf
http://haskell.org/definition/haskell-report-1.1.tar.gz
http://haskell.org/definition/haskell-report-1.0.ps.gz
http://okmij.org/ftp/Haskell/Haskell1/Haskell1.txt
http://dl.acm.org/citation.cfm?id=645391.651452
https://www.haskell.org/documentation
https://www.haskell.org/documentation

Partial Type Constructors (extended version) 27

NY, USA, 423–438. https://doi.org/10.1145/1449764.1449798

J. Garrett Morris and Richard A. Eisenberg. 2017. Constrained Type Families. Proc. ACM Program. Lang. 1, ICFP, Article 42
(Aug. 2017), 28 pages. https://doi.org/10.1145/3110286

J. Garrett Morris and James McKinna. 2019. Abstracting extensible data types: or, rows by any other name. PACMPL 3,

POPL (2019), 12:1–12:28. https://dl.acm.org/citation.cfm?id=3290325

Dominic Orchard and Tom Schrijvers. 2010. Haskell Type Constraints Unleashed. In Proceedings of the 10th International
Conference on Functional and Logic Programming (FLOPS’10). Springer-Verlag, Berlin, Heidelberg, 56–71. https://doi.org/

10.1007/978-3-642-12251-4_6

Simon Peyton Jones. 1991. Contexts in data and type. http://code.haskell.org/~dons/haskell-1990-2000/msg00072.html.

Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and Martin Sulzmann. 2008. Type checking with open type

functions. In Proceeding of the 13th ACM SIGPLAN international conference on Functional programming (IFCP ’08). ACM,

Victoria, BC, Canada, 51–62.

Dana Scott. 1979. Identity and existence in intuitionistic logic. In Applications of Sheaves: Proceedings of the Research
Symposium on Applications of Sheaf Theory to Logic, Algebra, and Analysis, Durham, July 9–21, 1977, Michael Fourman,

Christopher Mulvey, and Dana Scott (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 660–696.

Neil Sculthorpe, Jan Bracker, George Giorgidze, and Andy Gill. 2013. The Constrained-monad Problem. In Proceedings of the
18th ACM SIGPLAN International Conference on Functional Programming (ICFP ’13). ACM, New York, NY, USA, 287–298.

https://doi.org/10.1145/2500365.2500602

Jan Stolarek, Simon L. Peyton Jones, and Richard A. Eisenberg. 2015. Injective type families for Haskell. In Proceedings of
the 8th ACM SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver, BC, Canada, September 3-4, 2015, Ben Lippmeier

(Ed.). ACM, Vancouver, BC, Canada, 118–128.

Bjarne Stroustrup. 1994. The Design and Evolution of C++. Addison-Wesley, Boston, MA.

Sandro Stucki. 2017. Higher-Order Subtyping with Type Intervals. Ph.D. Dissertation. School of Computer and Communication

Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland. https://doi.org/10.5075/epfl-thesis-8014

EPFL thesis no. 8014.

Martin Sulzmann, Manuel M. T. Chakravarty, Simon L. Peyton Jones, and Kevin Donnelly. 2007. System F with type equality

coercions. In Proceedings of TLDI’07: 2007 ACM SIGPLAN International Workshop on Types in Languages Design and
Implementation, Nice, France, January 16, 2007, François Pottier and George C. Necula (Eds.). ACM, 53–66.

Thomas Winant, Dominique Devriese, Frank Piessens, and Tom Schrijvers. 2014. Partial Type Signatures for Haskell. In

Practical Aspects of Declarative Languages, Vol. 8324. Springer International Publishing, 17–32.
Andrew K. Wright and Matthias Felleisen. 1994. A Syntactic Approach to Type Soundness. Inf. Comput. 115, 1 (1994), 38–94.

https://doi.org/10.1006/inco.1994.1093

Hongwei Xi, Chiyan Chen, and Gang Chen. 2003. Guarded Recursive Datatype Constructors. In Proceedings of the 30th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’03). ACM, New York, NY, USA, 224–235.

, Vol. 1, No. 1, Article . Publication date: September 2019.

https://doi.org/10.1145/1449764.1449798
https://doi.org/10.1145/3110286
https://dl.acm.org/citation.cfm?id=3290325
https://doi.org/10.1007/978-3-642-12251-4_6
https://doi.org/10.1007/978-3-642-12251-4_6
http://code.haskell.org/~dons/haskell-1990-2000/msg00072.html
https://doi.org/10.1145/2500365.2500602
https://doi.org/10.5075/epfl-thesis-8014
https://doi.org/10.1006/inco.1994.1093

28 Mark P. Jones, J. Garrett Morris, Richard A. Eisenberg, and Apoorv N. Ingle

A FORMAL PROPERTIES OF THE SURFACE LANGUAGE
See Figure 1, Figure 4.

Assumptions:

(1) There exists a relation C : κ assigning kinds to type constants C.
(2) We have (→) : ⋆→ ⋆→ ⋆.
(3) There exists a relation L : κi → pred assigning lists of argument kinds to class constants L.
(4) We have ϵ ⊢⊢ (→) @ τ and ϵ ⊢⊢ (→)τ1 @ τ2.

Definition 9 (dom(∆)). The domain is the set of all the type variables present in the kinding

environment.

dom(∆) = {α | (α :κ) ∈ ∆}

Lemma 10 (Weakening). If P | ∆ ⊢ σ : κ, then P | ∆,∆′ ⊢ σ : κ.

Proof. By induction on the structure of P | ∆ ⊢ σ : κ. As we require that environments not

repeat variables, the bindings in ∆′ cannot interfere with the remainder of the derivation. �

Lemma 11 (Strengthening). If P | ∆,∆′ ⊢ σ : κ such that dom(∆′) ∩ (fv(σ) ∪ fv(P)) = ∅, then
P | ∆ ⊢ σ : κ

Proof. By induction on the structure of P | ∆,∆′ ⊢ σ : κ. We have six cases, each of them

straightforward to prove by inspecting the derivation. �

Lemma 12 (Cut). If P, π | ∆ ⊢ σ : κ and P ⊢⊢ π , then P | ∆ ⊢ σ : κ

Proof. Proof by induction on the structure of P, π | ∆ ⊢ σ : κ, using Lemma 4 for (k-⇒). �

Lemma 13 (Source kinding is deterministic). If P | ∆ ⊢ σ : κ and P | ∆ ⊢ σ : κ ′, then κ = κ ′.

Proof. Straightforward induction. �

Lemma 14 (Source type substitution). Assume ∆,α :κ2,∆′ ⊢ P and P | ∆ ⊢ τ2 : κ2.
(1) If P | ∆,α :κ2,∆′ ⊢ σ : κ, then [τ2/α]P | ∆,∆′ ⊢ [τ2/α]σ : κ.
(2) If P | ∆,α :κ2,∆′ ⊢ π pred, then [τ2/α]P | ∆,∆′ ⊢ [τ2/α]π pred.

Proof. By induction on the structure of the input typing derivation.

Case σ = α : Immediate by the definition of substitution and Lemma 11.

Case σ = α ′, α ′ , α : σ is unchanged by substitution, and so this, too, is immediate by Lemma 10.

Case σ = τ1 τ2: By the induction hypothesis and the substitution property of entailment (Lemma 4.3.)

Other cases: By the induction hypothesis or the fact that constant kinds are closed. �

Theorem 1 (Regularity). If ∆ ⊢ P, P | ∆ ⊢ Γ, and P | ∆ ; Γ ⊢ E : σ , then P | ∆ ⊢ σ : ⋆.

Proof. The proof goes by induction on the structure of P | ∆ ; Γ ⊢ E : σ
Case x : σ : We have a derivation of the form

(x:σ) ∈ Γ
(var)

P | ∆ ; Γ ⊢ x : σ

Given (x:σ) ∈ Γ and hypothesis P | ∆ ⊢ Γ immediately follows that P | ∆ ⊢ σ : ⋆
Case let x = E1 in E2 : τ : We have a derivation of the form

P | ∆ ; Γ ⊢ E1 : σ P | ∆ ; Γ, x:σ ⊢ E2 : τ
(let)

P | ∆ ; Γ ⊢ let x = E1 in E2 : τ

, Vol. 1, No. 1, Article . Publication date: September 2019.

Partial Type Constructors (extended version) 29

By induction on the first hypothesis we have P | ∆ ⊢ σ : ⋆; combining this with the assumption

P | ∆ ⊢ Γ it follows that P | ∆ ⊢ Γ, x:σ . Now, using induction on the second hypothesis we obtain

the required result P | ∆ ⊢ τ : ⋆.
Case E1 E2 : τ :We have a derivation of the form

P | ∆ ; Γ ⊢ E1 : τ1 → τ2 P | ∆ ; Γ ⊢ E2 : τ1
(→E)

P | ∆ ; Γ ⊢ E1 E2 : τ2
By induction on the first hypothesis we have P | ∆ ⊢ τ1 → τ2 : ⋆. Also by the kinding relation we

have:

P | ∆ ⊢ (→) @ τ1 : ⋆→ ⋆ P | ∆ ⊢ τ2 : ⋆ P ⊢⊢ τ1 @ τ ′

P | ∆ ⊢ τ1 → τ2 : ⋆

This also includes the derivation of P | ∆ ⊢ τ2 : ⋆ hence giving us the required conclusion.

Case λx .E : τ1 → τ2:We have a derivation of the form

P | ∆ ; Γ, x:τ1 ⊢ E : τ2 P | ∆ ⊢ τ1 → τ2 : ⋆
(→I)

P | ∆ ; Γ ⊢ λx .E : τ1 → τ2

The required conclusion P | ∆ ⊢ τ1 → τ2 : ⋆ appears in the hypothesis of the derivation, thus

giving us the needed result.

Case E:ρ:We have a derivation of the form

P | ∆ ; Γ ⊢ E : π ⇒ ρ P ⊢⊢ π
(⇒E)

P | ∆ ; Γ ⊢ E : ρ

By induction on the first hypothesis we have P | ∆ ⊢ π ⇒ ρ : ⋆ and hence, by kinding relation

we have P, π | ∆ ⊢ ρ : ⋆. Now by Lemma 12, and the second hypothesis we have the required

conclusion P | ∆ ⊢ ρ : ⋆.
Case E : π ⇒ ρ:We have a derivation of the form

P, π | ∆ ; Γ ⊢ E : ρ P | ∆ ⊢ π pred
(⇒I)

P | ∆ ; Γ ⊢ E : π ⇒ ρ

By induction on the first hypothesis we have P, π | ∆ ⊢ ρ : ⋆. By the second hypothesis we have

P | ∆ ⊢ π pred. Now by the kinding relation we can build a derivation of the required conclusion

P | ∆ ⊢ π pred P, π | ∆ ⊢ ρ : ⋆

P | ∆ ⊢ π ⇒ ρ : ⋆

Case E : [τ/α]σ :We have a derivation of the form

P | ∆ ; Γ ⊢ E : ∀α :κ .σ P | ∆ ⊢ τ : κ
(∀E)

P | ∆ ; Γ ⊢ E : [τ/α]σ

By induction on the first hypothesis we have P | ∆ ⊢ ∀α :κ .σ : ⋆. Now due to the substitution

lemma (Lemma 14) and the second hypothesis we can build the required conclusion.

Case E : ∀α :κ .σ :We have a derivation of the form

P | ∆,α :κ ; Γ ⊢ E : σ
(∀I)

P | ∆ ; Γ ⊢ E : ∀α :κ .σ

, Vol. 1, No. 1, Article . Publication date: September 2019.

30 Mark P. Jones, J. Garrett Morris, Richard A. Eisenberg, and Apoorv N. Ingle

By induction on the hypothesis we know that P | ∆ ⊢ σ : ⋆. By virtue of α < TV (P) and the kinding
relation, the required conclusion can be derived. �
Lemma 15 (Elaborating Mono Types, Predicates andQualified Types).

(1) If ∆ ⊢u τ : κ and τ ↪→ P then P | ∆ ⊢ τ : κ.
(2) If ∆ ⊢u π : κ and π ↪→ P then P | ∆ ⊢ π : κ.
(3) If ∆ ⊢u π ⇒ ρ : κ and π ↪→ P1 and ρ ↪→ P2 then P1, P2 | ∆ ⊢ π ⇒ ρ : κ.
Proof.

(1) By induction on the structure of τ we get three cases:

Case α : We have a derivation

α :κ ∈ ∆

∆ ⊢u α : κ

Using the hypothesis we can build the required conclusion ϵ | ∆ ⊢ α : κ.
Case C: This case is similar to previous case.

Case τ1 τ2: We have the following derivation

∆ ⊢u τ1 : κ
′→ κ ∆ ⊢u τ2 : κ

′

∆ ⊢u τ 1τ2 : κ

We also have the following elaboration hypothesis τ1 ↪→ P1, τ2 ↪→ P2 from τ1 τ2 ↪→
P1, P2, τ1 @ τ2.
By induction on the first hypothesis we get P1 | ∆ ⊢ τ1 : κ ′ → κ and induction on second

hypothesis we have P2 | ∆ ⊢ τ2 : κ ′ Thus we can build a derivation for the required conclusion

P1, P2, τ1 @ τ2 | ∆ ⊢ τ1 τ2 : κ
(2) By examining the structure of π we get:

Case L: We have a derivation

L : κi ∆ ⊢u τi : κi

∆ ⊢u Lτi pred

By elaboration we have the hypothesis τi ↪→ Pi . By applying Lemma 15.1 to the ith hypothesis
we get Pi | ∆ ⊢ τi : κi. Now using the first hypothesis we can build a derivation of required

conclusion Pi | ∆ ⊢ Lτi pred
(3) By induction on the structure of ρ:

Case π ⇒ ρ: We have the following derivation:

∆ ⊢u π pred ∆ ⊢u ρ : ⋆

∆ ⊢u π ⇒ ρ : ⋆

By elaboration we have two hypothesis π ↪→ P1 and ρ ↪→ P2. Applying Lemma 15.2 to the

first hypothesis, gives P1 | ∆ ⊢ π pred and by induction to the second hypothesis we get

P2 | ∆ ⊢ ρ : ⋆, so we can build the derivation of the required conclusion P1, P2 | ∆ ⊢ π ⇒ ρ : ⋆
Case τ : by Lemma 15.1. �

Lemma 16. If ∆ ⊢u ρ : ⋆ and ρ ↪→ P then ∆ ⊢ P.

Proof. By induction. �

Theorem 2 (Elaborating Type Schemes). If ∆ ⊢u σ : κ and σ ↪→ σ ′ then ϵ | ∆ ⊢ σ ′ : κ.

, Vol. 1, No. 1, Article . Publication date: September 2019.

Partial Type Constructors (extended version) 31

Proof. By structural induction on σ we get two cases:

Case ∀α :κ .ρ: By elaboration assumption ρ ↪→ P we get ∀α :κ .ρ ↪→ ∀α :κ .P ⇒ ρ. By Lemma 15,

we have P | ∆,α :κ ⊢ ρ : ⋆ and so by a simple induction on P we have ϵ | ∆,α :κ ⊢ P ⇒ ρ : ⋆. Finally,
we can construct ϵ | ∆ ⊢ ∀α :κ .P ⇒ ρ : ⋆, as we wanted.

Case ∀α :κ .σ : By elaboration assumption σ ↪→ σ ′ ∀α :κ .σ ↪→ ∀α :κ .σ ′. The rest follows by

induction. �

Theorem 3 (Elaborating User-defined Datatypes).

If ϵ ⊢u data P ⇒ C α :κ = K τ and data P ⇒ C α :κ = K τ ↪→ P ′,
then ϵ ⊢ data P ′, P ⇒ C α :κ = K τ .

Proof. We have the following derivation

αi:κi ⊢u P αi:κi ⊢u τjk : ⋆
Π1 =

ϵ ⊢u data P ⇒ C αi:κi = Kj τjk

We also have the following elaboration derivation

P ↪→ P ′′ τjk ↪→ Pjk P ′ = {π | π ∈ P ′′, Pjk ∧ π < wft(C α)}
Π2 =

data P ⇒ C α :κ = Kj τjk ↪→ P ′

We have τjk ↪→ Pjk and Pjk ⊆ (P, P ′,wft(C α))
Now using them and applying Lemma 15 on the second hypothesis of Π1 we get

wft(C α), P, P ′ | αi:κi ⊢ τjk : ⋆.
From Lemma 16 we have that αi:κi ⊢ wft(C αi), P, P ′

We can now build the required conclusion. �

Lemma 4 (Properties of entailment).

(1) Monotonicity: If P ⊢⊢ π then P, P ′ ⊢⊢ π .
(2) Cut: If P ⊢⊢ π1 and P, π1 ⊢⊢ π2 then P ⊢⊢ π2.
(3) Closure under substitution: If S is some well-kinded substitution, and P ⊢⊢ π , then S P ⊢⊢ S π .

Proof.

(1) By induction.

(2) By monotonicity and transitivity.

(3) By induction. �

B INTERNAL LANGUAGE
C, L ::= (→) | ⊤κ | . . . type constants

x ::= . . . term-level variables

α, ℓ ::= . . . type-level variables

δ ::= . . . evidence variables

s ::= ⋆ | o
κ ::= s | (α :κ1) → κ2 | (δ :π) ⇒ κ

τ , π ::= C | α | τ1 τ2 | τ υ | ∀α :κ .τ | (δ :π) ⇒ τ
υ ::= δ | ♦ | . . . evidence terms

E ::= x | λx:τ .E | E1 E2 | λδ :π .E | Eυ | Λα :κ .E | E τ
∆ ::= ϵ | ∆,α :κ | ∆, δ :π
Γ ::= ϵ | Γ, x:τ

, Vol. 1, No. 1, Article . Publication date: September 2019.

32 Mark P. Jones, J. Garrett Morris, Richard A. Eisenberg, and Apoorv N. Ingle

Assumptions:

(1) There exists a relationC : κ assigning kinds to type constantsC. These kindsκ are closed—that
is, they have no free variables.

(2) We write κ1 → κ2 as an abbreviation for (α :κ1) → κ2 when α is not free in κ2.
(3) We have (→) : (α1:⋆) → ⊤⋆→o α1 ⇒ (α2:⋆) → ⊤⋆→⋆→o α1 α2 ⇒ ⋆ and ⊤κ : κ. We write

τ1 → τ2 for (→)τ1 ♦τ2 ♦.
(4) The typing judgment for evidence ∆ ⊢i υ : π (defined below) contains rules for the unspecified

evidence forms. These rules have the substitution property. That is, for any judgment J in

the rules’ premises, if we assume that ∆,α :κ2,∆
′ ⊢ J and ∆ ⊢i τ2 : κ2 implies ∆, [τ2/α]∆

′ ⊢

[τ2/α]J , then the conclusion ∆, [τ2/α]∆
′ ⊢i [τ2/α]υ : [τ2/α]π also holds.

∆ ⊢i κ kind

∆ ⊢i s kind

∆ ⊢i κ1 kind ∆,α :κ1 ⊢i κ2 kind

∆ ⊢i (α :κ1) → κ2 kind

∆ ⊢i π : o ∆, δ :π ⊢i κ kind

∆ ⊢i (δ :π) ⇒ κ kind

∆ ⊢i τ : κ

C : κ

∆ ⊢i C : κ

α :κ ∈ ∆

∆ ⊢i α : κ

∆ ⊢i τ1 : (α :κ1) → κ2 ∆ ⊢i τ2 : κ1

∆ ⊢i τ1 τ2 : [τ2/α]κ2

∆ ⊢i τ : (δ :π) ⇒ κ ∆ ⊢i υ : π

∆ ⊢i τ υ : [υ/δ]κ

∆ ⊢i κ kind ∆,α :κ ⊢i τ : s

∆ ⊢i ∀α :κ .τ : s

∆ ⊢i π : o ∆, δ :π ⊢i τ : s

∆ ⊢i (δ :π) ⇒ τ : s

∆ ⊢i υ : π

δ :π ∈ ∆

∆ ⊢i δ : π

∆ ⊢i ⊤κ τi : o

∆ ⊢i ♦ : ⊤κ τi
· · ·

∆; Γ ⊢i E : τ

x:τ ∈ Γ
∆; Γ ⊢i x : τ

(Var)
∆; Γ ⊢i E1 : τ1 → τ2 ∆; Γ ⊢i E2 : τ1

∆; Γ ⊢i E1 E2 : τ2
(→E)

∆ ⊢i τ1 : ⋆ ∆; Γ, x:τ1 ⊢i E : τ2

∆; Γ ⊢i λx:τ1.E : τ1 → τ2
(→I)

∆; Γ ⊢i E : ∀α :κ .τ2 ∆ ⊢i τ1 : κ

∆; Γ ⊢i E τ1 : [τ1/α]τ2
(∀E)

∆ ⊢i κ kind ∆,α :κ; Γ ⊢i E : τ

∆; Γ ⊢i Λα :κ .E : ∀α :κ .τ
(∀I)

∆; Γ ⊢i E : (δ :π) ⇒ τ ∆ ⊢i υ : π

∆; Γ ⊢i Eυ : [υ/δ]τ
(⇒E)

∆ ⊢i π : o ∆, δ :π ; Γ ⊢i E : τ

∆; Γ ⊢i λδ :π .E : (δ : π) ⇒ τ
(⇒I)

, Vol. 1, No. 1, Article . Publication date: September 2019.

Partial Type Constructors (extended version) 33

E1 −→ E2

E1 −→ E′
1

E1 E2 −→ E′
1
E2
(@≈)

(λx:τ .E1) E2 −→ [E2/x]E1
(β)

E −→ E′

E τ −→ E′ τ
(τ@≈)

(Λα :κ .E)τ −→ [τ/α]E
(τ β)

E −→ E′

Eυ −→ E′υ
(υ@≈)

(λδ :π .E)υ −→ [υ/δ]E
(υβ)

Lemma 17 (Weakening in types). Assume ∆ ⊆ ∆′ and, as usual, there are no repeated bindings
in ∆′.
(1) If ∆ ⊢i κ kind, then ∆′ ⊢i κ kind.
(2) If ∆ ⊢i τ : κ, then ∆′ ⊢i τ : κ.
(3) If ∆ ⊢i υ : π , then ∆′ ⊢i υ : π .

Proof. Straightforward mutual induction. �

Lemma 18 (Strengthening in types). Assume dom(∆) ∩ dom(∆′) = ∅
(1) If ∆,∆′ ⊢i κ kind, then ∆ ⊢i κ kind.
(2) If ∆,∆′ ⊢i τ : κ, then ∆ ⊢i τ : κ.
(3) If ∆,∆′ ⊢i υ : π , then ∆ ⊢i υ : π .

Proof. Straightforward mutual induction. �

Lemma 19 (Weakening). If ∆; Γ ⊢i E : τ , then ∆; Γ, Γ′ ⊢i E : τ . As usual, we assume dom(Γ) ∩
dom(Γ′) = ∅.

Proof. Straightforward induction on ∆; Γ ⊢i E : τ . �

Lemma 20 (Strengthening). If ∆; Γ, x : τ2, Γ
′ ⊢i E : τ1 and x is not free in E, then ∆; Γ, Γ′ ⊢i E : τ1.

Proof. Straightforward induction on ∆; Γ, x : τ2, Γ
′ ⊢i E : τ1. �

Lemma 21 (Substitution). If ∆; Γ, x : τ2, Γ
′ ⊢i E1 : τ1 and ∆; Γ ⊢i E2 : τ2, then ∆; Γ, Γ′ ⊢i [E2/x]E1 :

τ1.

Proof. By induction on ∆; Γ, x : τ2, Γ
′ ⊢i E1 : τ1.

Case Var: We know E = x ′. We have three cases:

Case x ′ ∈ Γ: Then [E2/x]E1 = E1 and we are done by strengthening (Lemma 20).

Case x ′ = x: We are done by assumption and weakening (Lemma 19).

Case x ′ ∈ Γ′: Similar to first sub-case.

Other cases: By the induction hypothesis. �
Lemma 22 (Type substitution in types). If ∆ ⊢i τ2 : κ2:
(1) If ∆,α :κ2,∆′ ⊢i κ1 kind, then ∆, [τ2/α]∆

′ ⊢i [τ2/α]κ1 kind.
(2) If ∆,α :κ2,∆′ ⊢i τ1 : κ1, then ∆, [τ2/α]∆

′ ⊢i [τ2/α]τ1 : [τ2/α]κ1.
(3) If ∆,α :κ2,∆′ ⊢i υ : π , then ∆, [τ2/α]∆

′ ⊢i [τ2/α]υ : [τ2/α]π .

Proof. Proof is by mutual induction and structural analysis on each sub parts.

, Vol. 1, No. 1, Article . Publication date: September 2019.

34 Mark P. Jones, J. Garrett Morris, Richard A. Eisenberg, and Apoorv N. Ingle

(1) We have three cases:

Case s: This case is trivial as s can be ⋆ or o. Both cases are idempotent to substitution.

Case (α :κ1) → κ2: By induction on hypothesis of the derivation and Lemma 17

Case π ⇒ κ: By induction on hypothesis of the derivation and Lemma 17

(2) We have six cases:

Case C: by induction on the hypothesis of derivation and weakening.

Case α ′: This has three sub-cases:
Case α ′ ∈ ∆: The substitution is idempotent and Lemma 18

Case α ′ = α : This the proved by assumption and Lemma 17

Case α ′ ∈ ∆′: this is similar to sub-case 1

Case τ1 τ2: by induction hypothesis of derivation and Lemma 17.

Case τ υ: by induction hypothesis of derivation and Lemma 17.

Case ∀α :κ .τ : by induction hypothesis of derivation and Lemma 17.

Case (δ :π) ⇒ τ : by induction hypothesis of derivation and Lemma 17.

(3) we have two cases:

Case δ : similar to case α ′

Case ♦: by induction hypothesis and Lemma 17 �

Lemma 23 (Type substitution). If ∆,α :κ,∆′; Γ ⊢i E : τ and ∆ ⊢i τ ′ : κ, then ∆, [τ ′/α]∆′; [τ ′/α]Γ ⊢i
[τ ′/α]E : [τ ′/α]τ .

Proof. By induction and appeal to Lemma 22. �
Lemma 24 (Evidence substitution in types). If ∆ ⊢i υ2 : π2:
(1) If ∆, δ :π2,∆′ ⊢i κ1 kind, then ∆, [υ2/δ]∆

′ ⊢i [υ2/δ]κ1 kind.
(2) If ∆, δ :π2,∆′ ⊢i τ1 : κ1, then ∆, [υ2/δ]∆

′ ⊢i [υ2/δ]τ1 : [υ2/δ]κ1.
(3) If ∆, δ :π2,∆′ ⊢i υ1 : π1, then ∆, [υ2/δ]∆

′ ⊢i [υ2/δ]υ1 : [υ2/δ]π1.

Proof. The proof is a standard proof of a substitution property, relying on our assumption that

the ∆ ⊢i υ : π relation supports substitution. �

Lemma 25 (Evidence substitution). If∆, δ :π ,∆′; Γ ⊢i E : τ and∆ ⊢i υ : π , then∆, [υ/δ]∆′; [υ/δ]Γ ⊢i
[υ/δ]E : [υ/δ]τ .

Proof. By induction and appeal to Lemma 24. �

Theorem 6 (Preservation). If ∆; Γ ⊢i E : τ and E −→ E′, then ∆; Γ ⊢i E′ : τ .

Proof. By induction on E −→ E′.
Congruence rules (≈): By the induction hypothesis.

Case (β): By the substitution lemma (21).

Case (τ β): By the type substitution lemma (23).

Case (υβ): By the evidence substitution lemma (25).

�

Definition 26 (Values). The three abstraction forms of expressions E are considered values. Other
expression forms are not values.

Lemma 27 (Canonical forms). Assume E is a value.
(1) If ∆; Γ ⊢i E : τ1 → τ2, then E = λx:τ1.E′ for some E′.
(2) If ∆; Γ ⊢i E : ∀α :κ .τ , then E = Λα :κ .E′ for some E′.
(3) If ∆; Γ ⊢i E : (δ :π) ⇒ τ , then E = λδ :π .E′ for some E′.

, Vol. 1, No. 1, Article . Publication date: September 2019.

Partial Type Constructors (extended version) 35

Proof. Straightforward case analysis. �

Theorem 7 (Progress). If ∆; ϵ ⊢i E : τ , then either E is a value or there exists E′ such that E −→ E′.

Proof. By induction on the typing derivation.

Case Var: Impossible.

Case→E: We use the induction hypothesis on the first premise, learning that E1 is either a value
or steps. If it steps, we are done by @≈. If it is a value, we invoke Lemma 27 and step by β .

Case→I: E is a value.

Other cases: Similar to the cases above.

�

C COMPILATION
We define compilation by the set of judgments below. Compilation relies on two auxiliary structures

and one auxiliary judgment:

ψ ::= ϵ | ψ ,α :κ telescopes

µ ::= ϵ | µ,α 7→ ψ | µ, π 7→ δ compilation contexts

∆ ⊢i ψ tele

∆ ⊢i ϵ tele

∆ ⊢i κ kind ∆,α :κ ⊢i ψ tele

∆ ⊢i α :κ,ψ tele

Lemma 28 (Weakening in telescopes). If ∆ ⊆ ∆′ and ∆ ⊢i ψ tele, then ∆′ ⊢i ψ tele.

Proof. Straightforward induction. �

The judgments defining compilation follow:

κ;ψ { κ;′ψ ′

⋆;ψ { ⋆; ϵ

κ1; ϵ { κ ′
1
;ψ1 ψ ′ = ψ ,ψ1,α :κ

′
1

κ2;ψ
′ { κ ′

2
;ψ2 ψ ′

2
= ℓ:(∀ψ .∀ψ1.κ

′
1
→ o),ψ2

κ1 → κ2;ψ { ∀ψ1.(α :κ
′
1
) → ℓ dom(ψ) dom(ψ1)α ⇒ κ ′

2
;ψ ′

2

∆ { ∆′; µ

ϵ { ϵ ; ϵ

∆ { ∆′; µ κ; ϵ { κ ′;ψ

∆,α :κ { ∆′,ψ ,α :κ ′; µ,α 7→ ψ

∆ | P { ∆′; µ

∆ { ∆′; µ

∆ | ϵ { ∆′; µ

∆ | P { ∆′; µ ∆ | P ⊢ π pred {µ π
′

∆ | P, π { ∆′, δ :π ′; µ, π 7→ δ

, Vol. 1, No. 1, Article . Publication date: September 2019.

36 Mark P. Jones, J. Garrett Morris, Richard A. Eisenberg, and Apoorv N. Ingle

P | ∆ ⊢ σ : κ {µ τ ;τ ′

α :κ ∈ ∆ α 7→ ψ ∈ µ

P | ∆ ⊢ α : κ {µ α ; dom(ψ)
C : κ

P | ∆ ⊢ C : κ {µ C; lookup(C)

κ; ϵ { κ ′;ψ P | ∆,α :κ ⊢ σ : ⋆{µ ,α 7→ψ τ ;τ

P | ∆ ⊢ ∀α :κ .σ : ⋆{µ ∀ψ .∀α :κ
′.τ ; ϵ

P | ∆ ⊢ τ1 : κ1 → κ2 {µ τ
′
1
;τ P | ∆ ⊢ τ2 : κ1 {µ τ

′
2
;τ ′

P ⊢⊢ τ1 @ τ2 {µ υ τ ′′ = [τ0 τ ′ τ
′
2
| τ0 ← tail(τ)]

P | ∆ ⊢ τ1 τ2 : κ2 {µ τ
′
1
τ ′ τ ′

2
υ;τ ′′

P | ∆ ⊢ π pred {µ π
′ P, π | ∆ ⊢ ρ : ⋆{µ ,π 7→δ τ ;τ

P | ∆ ⊢ π ⇒ ρ : ⋆{µ (δ : π ′) ⇒ τ ; ϵ

P | ∆ ⊢ π pred {µ π
′

P | ∆ ⊢ τ1 : κ1 → κ2 {µ τ
′
1
;π , τ P | ∆ ⊢ τ2 : κ1 {µ τ

′
2
;τ ′

P | ∆ ⊢ τ1 @ τ2 pred {µ π τ ′ τ
′
2

L : κi → pred P | ∆ ⊢ τi : κi {µ τ
′
i ;τ
′′
i

P | ∆ ⊢ Lτi pred {µ Lτ ′′ τ ′

P ⊢⊢ π {µ υ

π 7→ δ ∈ µ

P ⊢⊢ π {µ δ

solve(π) { υ

P ⊢⊢ π {µ υ

, Vol. 1, No. 1, Article . Publication date: September 2019.

Partial Type Constructors (extended version) 37

P | ∆; Γ ⊢ E : σ {µ E′

x:σ ∈ Γ
P | ∆; Γ ⊢ x : σ {µ x

P | ∆; Γ ⊢ E1 : σ {µ E′
1

P | ∆ ⊢ σ : ⋆{µ τ
′
;τ ′′ P | ∆; Γ, x:σ ⊢ E2 : τ {µ E′

2

P | ∆; Γ ⊢ let x = E1 in E2 : τ {µ (λx:τ ′.E′2) E
′
1

P | ∆; Γ ⊢ E1 : τ1 → τ2 {µ E′
1

P | ∆; Γ ⊢ E2 : τ1 {µ E′
2

P | ∆; Γ ⊢ E1 E2 : τ2 {µ E′
1
E′
2

P | ∆; Γ, x:τ1 ⊢ E : τ2 {µ E′ P | ∆ ⊢ τ1 → τ2 : ⋆{µ τ
′
1
→ τ ′

2
;τ ′′

P | ∆; Γ ⊢ λx .E : τ1 → τ2 {µ λx:τ ′1 .E
′

P | ∆; Γ ⊢ E : π ⇒ ρ {µ E′ P ⊢⊢ π {µ υ

P | ∆; Γ ⊢ E : ρ {µ E′υ

P | ∆ ⊢ π pred {µ π
′ P, π | ∆; Γ ⊢ E : ρ {µ ,π 7→δ E′

P | ∆; Γ ⊢ E : π ⇒ ρ {µ λδ : π ′.E′

P | ∆; Γ ⊢ E : ∀α :κ .σ {µ E′ P | ∆ ⊢ τ : κ {µ τ
′′
;τ

P | ∆; Γ ⊢ E : [τ/α]σ {µ E′ τ τ ′

κ; ϵ { κ ′;ψ P | ∆,α :κ; Γ ⊢ E : σ {µ ,α 7→ψ E′

P | ∆; Γ ⊢ E : ∀α :κ .σ {µ Λψ .Λα :κ ′.E′

Assumptions regarding compilation:

(1) For every C, lookup(C) is a list of types πi such that πi is the constraint induced when C is

applied to its ith argument.

(2) For every C : κ in the source program, we have C : [lookup(C)/dom(ψ)]κ ′ in the internal

language, where κ; ϵ { κ ′;ψ .

(3) For every L : κi → pred in the source program, we have L : ∀ψi .κ
′
i →o in the internal

language, where κi; ϵ { κ ′i ;ψi.

(4) When C : κi → s in the source language and lookup(C) = πi, we have πi : ∀ψ1<j≤i .κ
′
i where

κi; ϵ { κ ′i ;ψi.

(5) Classes L are treated identically to type constants C for the previous assumption.

(6) For every L, lookup(L) is a list of types ⊤κ′i , where the length of the list equals the length of

the list in L : κi → o and the κi are chosen to uphold the previous assumption.

(7) There is a solver for predicates π such that solve(π) { υ implies that, when ϵ | ϵ ⊢ π pred {ϵ
π ′, then ϵ ⊢i υ : π ′.

The kind compilation judgment takes two inputs and produces two outputs. This is necessary

because compiling a kind produces a kind that quantifies over fresh variables, and so we have to

communicate these variables out to the caller. In addition, a compound kind, such as ⋆→ ⋆→ ⋆,
will quantify over more variables at each arrow. (See the lift example in the main text.) Thus, the

, Vol. 1, No. 1, Article . Publication date: September 2019.

38 Mark P. Jones, J. Garrett Morris, Richard A. Eisenberg, and Apoorv N. Ingle

input ψ are all the bindings that we have created so far, scanning left to right; the output ψ are

those that will have to be quantified over when quantifying over a variable of the output kind.

Definition 29 (Vector typing). We write ∆ ⊢i τ : ψ to mean that the types τ have the right kinds to

be used as arguments to a type of kind ∀ψ .κ.

Lemma 30 (Kind compilation). For all source-language kinds κ and telescopes ψ , if ∆ ⊢i ψ tele
and κ;ψ { κ ′;ψ ′, then ∆ ⊢i ψ

′ tele and ∆,ψ ′ ⊢i κ ′ kind.

Proof. By induction on the structure of κ.

Case κ = ⋆: The result is trivial.
Case κ = κ1 → κ2: We use the metavariables as they occur in the rule:

κ1; ϵ { κ ′
1
;ψ1 ψ ′ = ψ ,ψ1,α :κ

′
1

κ2;ψ
′ { κ ′

2
;ψ2 ψ ′

2
= ℓ:(∀ψ .∀ψ1.κ

′
1
→ o),ψ2

κ1 → κ2;ψ { ∀ψ1.(α :κ
′
1
) → ℓ dom(ψ) dom(ψ1)α ⇒ κ ′

2
;ψ ′

2

We consider the resulting kind one piece at a time:

• We know ∆,ψ ′
2
⊢i ψ1 tele by the induction hypothesis. We thus must show that ∆,ψ ′

2
,ψ1 ⊢i

(α :κ ′
1
) → ℓ dom(ψ) dom(ψ1)α ⇒ κ ′

2
kind.

• We know ∆,ψ ′
2
,ψ1 ⊢i κ ′

1
kind by the induction hypothesis. We thus must show that

∆,ψ ′
2
,ψ1,α :κ

′
1
⊢i ℓ dom(ψ) dom(ψ1)α ⇒ κ ′

2
kind.

• We must show ∆,ψ ′
2
,ψ1,α :κ

′
1
⊢i ℓ dom(ψ) dom(ψ1)α : o. Let the kind environment in that

judgment be denoted by ∆′. By construction ofψ ′
2
, we see that ∆′ ⊢i ℓ : ∀ψ .∀ψ1.κ

′
1
→ o. By

repeated use of the application rule for types and using the weakening lemma (Lemma 17),

we have our desired outcome. (Note that the substitution in the kind of the application rule

has no effect, because we end up substituting variables for themselves.)

• It remains only to show that ∆′, δ :ℓ dom(ψ) dom(ψ1)α ⊢i κ
′
2
kind. In order to use the induc-

tion hypothesis on κ2;ψ
′ { κ ′

2
;ψ2, we must show that ∆ ⊢i ψ

′ tele. We get this result from

a fresh use of the induction hypothesis on κ1; ϵ { κ ′
1
;ψ1 and weakening (Lemma 28). We

know use the induction hypothesis to get ∆,ψ2 ⊢i κ
′
2
kind, and weakening (Lemma 17) gives

us our desired result.

�

Lemma 31 (Kind compilation yields fresh bindings). If κ;ψ { κ ′;ψ ′, all variables bounds in
ψ ′ are fresh. In particular, dom(ψ) ∩ dom(ψ ′) = ∅.

Proof. Straightforward induction. �

Lemma 32 (Bindings during kind compilation). If κ;ψ0 { κ ′;ψ1, then κ;ψ2,ψ0 { κ ′′;ψ3,
where κ ′′ = [τ/dom(ψ1)]κ

′ and τ = [τ0 dom(ψ2) | τ0 ← dom(binds3)]. Furthermore, for every i, if
ψ1i = ℓ1 : κi, thenψ3i = ℓ2 : ∀ψ2.κi.

Proof. By induction on the structure of κ.

Case κ = ⋆: Trivially true.

Case κ = κ1 → κ2: From the rule, we see that κ ′ = ∀ψ ′
1
.(α :κ ′

1
) → ℓ1 dom(ψ0) dom(ψ ′1)α ⇒ κ ′

2
,

whereκ2;ψ0,ψ
′
1
,α :κ ′

1
{ κ ′

2
;ψ ′

2
.We also see thatκ ′′ = ∀ψ ′

1
.(α :κ ′

1
) → ℓ2 dom(ψ2) dom(ψ0) dom(ψ ′1)α ⇒

κ ′′
2
, where κ2;ψ2,ψ0,ψ

′
1
,α :κ ′

1
{ κ ′′

2
;ψ ′′

2
. We must show that κ ′′ = [τ/(ℓ1, dom(ψ ′2))]κ

′
, where

τ = [τ0 dom(ψ2) | τ0 ← ℓ2, dom(ψ ′′2)]. In other words, τ = (ℓ2 dom(ψ2)), [τ0 dom(ψ2) | τ0 ←
dom(ψ ′′

2
)]. Propagating the substitution into κ ′ (and using Lemmas 31 and 30 to discard iden-

tity substitutions), we get that wewant to showκ ′′ = ∀ψ ′
1
.(α :κ ′

1
) → ℓ2 dom(ψ2) dom(ψ0) dom(ψ ′1)α ⇒

, Vol. 1, No. 1, Article . Publication date: September 2019.

Partial Type Constructors (extended version) 39

[tail(τ)/dom(ψ ′
2
)]κ ′

2
. It remains only to show that κ ′′

2
= [tail(τ)/dom(ψ ′

2
)]κ ′

2
. This comes di-

rectly from the induction hypothesis, and so we are done.

The relationship between the ψ3 and the ψ1 is by straightforward use of the inductive hy-

pothesis.

�

Lemma 33 (Kind compilation bindings are independent). If κ;ψ0 { κ ′;ψ1, then no variable
bound inψ1 is used in a kind inψ1.

Proof. Straightforward induction. �

Lemma 34 (Type compilation). Assume ∆ | P { ∆′; µ.

(1) If κ; ϵ { κ ′;ψ and P | ∆ ⊢ σ : κ {µ τ ;τ ′, then ∆′ ⊢i τ
′
: [τ ′/dom(ψ)]κ ′ and ∆′ ⊢i τ ′ : ψ .

(2) If P | ∆ ⊢ π pred {µ π
′, then ∆′ ⊢i π

′
: o.

(3) If P | ∆ ⊢ π pred {µ π
′ and P ⊢⊢ π {µ υ, then ∆′ ⊢i υ : π ′.

Proof. By mutual induction on the provided type derivation.

Case σ = α : We must show ∆′ ⊢i α : [dom(ψ)/dom(ψ)]κ ′ (noting that α 7→ ψ ∈ µ). This follows
from the definition of ∆′ and the compilation of κ. Note thatψ is a sub-context of ∆′.

Case σ = C: We must show ∆′ ⊢i C : [lookup(C)/dom(ψ)]κ ′. This is one of our compilation

assumptions.

Case σ = ∀α :κ2.σ2: We must show ∆′ ⊢i ∀ψ2.∀α :κ
′
2
.τ : ⋆, where κ2; ϵ { κ ′

2
;ψ2 and P | ∆,α :κ2 ⊢

σ2 : ⋆{µ ,α 7→ψ2
τ ;. We take this in pieces:

• First, we show ∆′ ⊢i ψ2 tele. This comes from the kind-compilation lemma (Lemma 30).

Thus, we now must show ∆′,ψ2 ⊢i ∀α :κ
′
2
.τ : ⋆.

• Our next step is to show ∆′,ψ2 ⊢i κ
′
2
kind. This also comes directly from Lemma 30. We

now must show ∆′,ψ2,α :κ
′
2
⊢i τ : ⋆.

• By the definition of compilation, we see that ∆,α :κ2 | P { ∆′,ψ2,α :κ
′
2
; µ,α 7→ ψ2. We can

thus use the induction hypothesis to get our desired result.

Case σ = τ1 τ2: We adopt the metavariable names from the rule:

P | ∆ ⊢ τ1 : κ1 → κ2 {µ τ
′
1
;τ P | ∆ ⊢ τ2 : κ1 {µ τ

′
2
;τ ′

P ⊢⊢ τ1 @ τ2 {µ υ τ ′′ = [τ0 τ ′ τ
′
2
| τ0 ← tail(τ)]

P | ∆ ⊢ τ1 τ2 : κ2 {µ τ
′
1
τ ′ τ ′

2
υ;τ ′′

We must show ∆′ ⊢i τ
′
1
τ ′ τ ′

2
υ : [τ ′′/dom(ψ2)]κ

′
2
where κ2; ϵ { κ ′

2
;ψ2.

• Let κ ′
1
andψ1 be defined by κ1; ϵ { κ ′

1
;ψ1.

• Thenκ1 → κ2; ϵ { ∀ψ1.(α :κ
′
1
) → ℓ dom(ψ1)α ⇒ κ ′′

2
; ℓ:(∀ψ1.κ

′
1
→ o),ψ ′

2
whereκ2;ψ1,α :κ

′
1
{

κ ′′
2
;ψ ′

2
. Let κ0 denote the output kind of compiling κ1 → κ2.

• Thus, the induction hypothesis tells us that ∆′ ⊢i τ
′
1
: [τ/(ℓ, dom(ψ ′

2
))]κ0.

• Lemmas 31 and 30, taken together, tell us that this substitution does not affectψ1 nor κ
′
1
.

• Propagating the substitution gives us∆′ ⊢i τ
′
1
: ∀ψ1.(α :κ

′
1
) → head(τ) tail(τ)α ⇒ [τ/(ℓ, dom(ψ ′

2
))]κ ′′

2
.

• We now must show that ∆′ ⊢i τ
′
: ψ1. This comes directly from the induction hypothesis.

• Using the application typing rule, we see that∆′ ⊢i τ
′
1
τ ′ : (α :([τ ′/ψ1]κ

′
1
)) → head(τ) tail(τ)α ⇒

[τ ′/ψ1][τ/(ℓ, dom(ψ ′2))]κ
′′
2
, where we have omitted substitutions that are guaranteed not to

have an effect.

• We now must show ∆′ ⊢i τ
′
2
: [τ ′/ψ1]κ

′
1
. This comes directly from the induction hypothesis.

• We now know ∆′ ⊢i τ
′
1
τ ′ τ ′

2
: head(τ) tail(τ)τ ′

2
⇒ [τ ′

2
/α][τ ′/ψ1][τ/(ℓ, dom(ψ ′2))]κ

′′
2
.

, Vol. 1, No. 1, Article . Publication date: September 2019.

40 Mark P. Jones, J. Garrett Morris, Richard A. Eisenberg, and Apoorv N. Ingle

• We now must show ∆′ ⊢i υ : head(τ) tail(τ)τ ′
2
. The induction hypothesis tells us that, if

P | ∆ ⊢ τ1 @ τ2 pred {µ π
′
, then ∆′ ⊢i υ : π ′. Examining the rule in the compilation of

predicates, we see that π ′ = head(τ) tail(τ)τ ′
2
, as desired.

• We now know ∆′ ⊢i τ
′
1
τ ′ τ ′

2
υ : [τ ′

2
/α][τ ′/ψ1][τ/(ℓ, dom(ψ ′2))]κ

′′
2
. By Lemma 32, we see that

κ ′′
2
= [[τ0 dom(ψ1)α | τ0 ← dom(ψ ′

2
)]/dom(ψ2)]κ

′
2
. To finish this part of the proof, we need

only show that τ ′′ = [τ0 τ ′ τ
′
2
| τ0 ← tail(τ)], which it does by definition.

We still must show ∆′ ⊢i τ
′′
: ψ2.

• The induction hypothesis tells us that ∆′ ⊢i τ : ℓ:(∀ψ1.κ
′
1
→ o),ψ ′

2
. Looking at only the tail

of the list, we see ∆′ ⊢i tail(τ) : ψ
′
2
(using the fact that, according to the definition of kind

compilation, ℓ does not appear later in the bindings output from that function).

• The induction hypothesis also tells us that ∆′ ⊢i τ
′
: ψ1.

• By Lemma 33, we know that we can view the judgment we must show simply as a list of

typing judgments—there is no dependency among the components.

• Fix i. We must show ∆′ ⊢i τ
′′
i : range(ψ2i), where τ

′′
i = τi+1 τ

′ τ ′
2
.

• We see that ∆′ ⊢i τi+1 : range(ψ
′
2i).

• Lemma 32 tells us that range(ψ ′
2i) = ∀ψ1.∀α :κ

′
1
.range(ψ2i).

• Thus, ∆′ ⊢i τi+1 : ∀ψ1.∀α :κ
′
1
.range(ψ2i).

• We can thus say that ∆′ ⊢i τi+1 τ
′
: ∀α :([τ ′/dom(ψ1)]κ

′
1
).[τ ′/dom(ψ1)]range(ψ2i).

• The induction hypothesis tells us that ∆′ ⊢i τ
′
2
: [τ ′/dom(ψ1)]κ

′
1
.

• We thus conclude that ∆′ ⊢i τi+1 τ
′ τ ′

2
: [τ ′

2
/α][τ ′/dom(ψ1)]range(ψ2i). That is ∆

′ ⊢i τ
′′
i :

[τ ′
2
/α][τ ′/dom(ψ1)]range(ψ2i).

• We notice thatψ2 comes from a context that does not mentionψ1 nor α . Thus, the substitu-
tion has no effect, and we are done.

Case σ = π ⇒ ρ: We must show ∆′ ⊢i (δ :π
′) ⇒ τ : ⋆, where P | ∆ ⊢ π pred {µ π ′ and

P, π | ∆ ⊢ ρ : ⋆{µ ,π 7→δ τ ;τ .
• We first show ∆′ ⊢i π

′
: o. This comes directly from the induction hypothesis.

• We then must show ∆′, δ :π ′ ⊢i τ : ⋆. In order to use the induction hypothesis, we first must

show ∆ | P, π { ∆′, δ :π ′; µ, π 7→ δ . This fact comes from the definition of compilation of

P , and so we are done.

Case π = τ1 @ τ2: We must show ∆′ ⊢i π
′ τ ′ τ ′

2
: o, where P | ∆ ⊢ τ1 : κ1 → κ2 {µ τ

′
1
;π ′, τ and

P | ∆ ⊢ τ2 : κ1 {µ τ
′
2
;τ ′.

• The induction hypothesis (and the definition of kind compilation) tells us ∆′ ⊢i π
′, τ :

ℓ:(∀ψ1.κ
′
1
→ o),ψ2, where κ1; ϵ { κ ′

1
;ψ1 and κ2;ψ1,α :κ

′
1
{ κ ′

2
;ψ2.

• Thus, ∆′ ⊢i π
′
: ∀ψ1.κ

′
1
→ o.

• The application rule tells us ∆′ ⊢i π
′ τ ′ : [τ ′/ψ1]κ

′
1
→ o.

• The induction hypothesis tells us ∆′ ⊢i τ
′
2
: [τ ′/ψ1]κ

′
1
.

• One more use of the application rule gives us our desired outcome.

Case π = Lτi: This case follows from the induction hypothesis and our assumption of the compi-

lation of class kinds.

Case P ⊢⊢ π {µ υ where π 7→ δ ∈ µ: We must show ∆′ ⊢i δ : π ′, where P | ∆ ⊢ π pred {µ π
′
.

This comes directly from the definition of compilation of predicate environments.

Case P ⊢⊢ π {µ υ where solve(π) { υ: By assumption.

�

Lemma 35 (Compilation of function types). If P | ∆ ⊢ τ1 → τ2 : ⋆{µ τ3; ϵ , then τ3 = τ4 → τ5
where P | ∆ ⊢ τ1 : ⋆{µ τ4; ϵ and P | ∆ ⊢ τ2 : ⋆{µ τ5; ϵ .

, Vol. 1, No. 1, Article . Publication date: September 2019.

Partial Type Constructors (extended version) 41

Proof. Recall that τ1 → τ2 means (→)τ1 ♦τ2 ♦. We can then get the desired result recalling that

compiling a type of kind ⋆ produces no list of types as output and that compiling (→) @ τ1 and
(→)τ1 @ τ2 both produce ⊤ constraints. �

Lemma 36 (Expression compilation). If ∆ | P { ∆′; µ and P | ∆; Γ ⊢ E : σ {µ E′, then
P | ∆ ⊢ σ : ⋆{µ τ ; ϵ and ∆′; Γ′ ⊢i E′ : τ , where Γ′ is the result of compiling each type in Γ.

Proof. If E is well-typed, then P | ∆ ⊢ σ : ⋆ by Theorem 1. Thus, we know P | ∆ ⊢ σ : ⋆{µ τ ; ϵ
(noting that compiling a type of kind ⋆ always yields an empty list of types as its second output)

by the similarity in the structure of source-language typing and compilation.

For the second result, proceed by induction, frequently appealing to Lemma 34.

Case (var): By the definition of Γ′.
Case (let): By induction and straightforward use of typing rules.

Case (→E): By induction, appeal to Lemma 35, and straightforward use of typing rules.

Case (→I): By induction, appeal to Lemma 35, and straightforward use of typing rules.

Case (⇒E): By induction and straightforward use of typing rules.

Case (⇒I): By induction and straightforward use of typing rules.

Case (∀E): By induction and straightforward use of typing rules.

Case (∀I): By induction, appeal to Lemma 30, and straightforward use of typing rules.

�

Theorem 8 (Compilation). If ϵ | ϵ ; ϵ ⊢ E : σ {ϵ E′, then ϵ | ϵ ⊢ σ : ⋆{ϵ τ ; ϵ and ϵ ; ϵ ⊢i E′ : τ .

Proof. Corollary of Lemma 36. �

D PROTOTYPE IMPLEMENTATION DETAILS
D.1 Polymorphic Kinds
The three-parameter constraint f @ a = r implemented in our prototype works at any kinds κ1
and κ2, as long as f :: κ1 → κ2, a :: κ1, and r :: κ2. However, Hugs does not support general
polymorphism in kinds. We thus had to add custom code to check the kinds of the components of

the three-part constraint. For similar reasons, Hugs’ normal functional dependencies could not fix

r from f and a, requiring more custom handling.

D.2 Syntactic Sugar
Our implementation supports both @ constraints and also wft constraints, where we understand

a wft constraint to expand to a sequence of @ constraints. For example, we write wft (a b c)
to mean (a @ b, a b @ c) (or, in the 3-parameter version, a @ b = ab, ab @ c = abc for
fresh type variables ab, abc).

D.3 Limitations
Our implementation is just an experimental prototype and it is not ready or intended for use in

general program development. In particular, the prototype does not implement general support for

user definitions of partial type constructors (i.e., for definitions of datatypes that require a context

to specify constraints on their parameters). Even so, our test scenario is not trivial because the

implementation must still generate and handle constraints for arbitrary type applications of the

form m t, where m is a variable of some higher-kinded type. Any such example leaves open the

possibility that m might later be instantiated to either a partial or a total type constructor, at some

other point in the program, and so each such occurrence will generate a constraint of the form

m @ t = u for some type variable u.

, Vol. 1, No. 1, Article . Publication date: September 2019.

42 Mark P. Jones, J. Garrett Morris, Richard A. Eisenberg, and Apoorv N. Ingle

This limitation in the prototype also means that we were unable to handle datatype definitions

with higher-kinded parameters, like the following example from the Control.Arrow library:

newtype Kleisli m a b = Kleisli (a → m b)

For proper use in our system, this definition should be written as follows, with the Monad m
constraint reflecting intended usage (something that the authors of this particular file had not

already chosen to do) and the m @ b constraint ensuring that the type m b is well defined:

newtype (Monad m, m @ b) ⇒ Kleisli m a b = Kleisli (a → m b)

Our workaround for this particular example was to keep the original newtype definition in place but
comment out the associated instance declarations, which, in any case, were not used elsewhere in

our collection of files, and amounted to 19 lines of code (out of 320 lines in the full Control.Arrow
source file). We encountered a handful of similar examples, particularly for definitions of monad

transformers in some of the Control.Monad.∗ libraries, that cannot be handled by our current

implementation, and so we opted not to include these in our tests (i.e., they are not counted

in the collection of 169 source files listed above). Nevertheless, given our experiences with the

Control.Applicative, Control.Arrow, and other parts of Control.Monad reported below, we

would not anticipate any fundamental problems with including these examples if the prototype

were extended to support datatype definitions like the one for Kleisli shown above.

We also found that it was necessary to comment out some of the default definitions that were

included in class definitions in five of our test files. However, we attribute this to a bug in the

Hugs implementation that we used as a starting point for our prototype, and believe that it has

no bearing on the type system described in this paper. To illustrate this, consider the following

fragment of the definition of the Foldable class in the Data.Foldable library:

class Foldable t where

fold :: Monoid m ⇒ t m → m

fold = foldMap id

. . .

In our system, the declared type for the fold member will automatically be translated to include

an additional constraint of the form t @ m = a for some fresh type variable a that is functionally

dependent on t and m. Unfortunately, the Hugs type checker rejects this particular definition

because it tries (incorrectly) to prove that the definition is fully polymorphic in a, failing to account
for the dependency that indicates, instead, that there is at most one valid choice of a for any given

combination of t and m. We concluded that fixing this oversight in Hugs was beyond the scope of

our experiment, and were satisfied to note that the definition does type check as expected when it

is lifted outside the class definition in an appropriate way.

, Vol. 1, No. 1, Article . Publication date: September 2019.

	Abstract
	1 Introduction
	2 Motivating scenarios
	2.1 Partial Type Constructors in the Wild
	2.2 Impact of Ignoring Partiality

	3 Language Design for Partial Type Constructors
	3.1 Datatype Contexts in Haskell
	3.2 A Constraint for Well-Formed Applications
	3.3 Consequences of Partial Type Constructors

	4 A Theory of Partial Type Constructors
	4.1 Type System Foundations
	4.2 Elaborating Types
	4.3 User-Defined Datatypes
	4.4 Entailment

	5 Making Partiality Explicit
	5.1 Internal Language Syntax and Semantics
	5.2 Examples
	5.3 Compiling Types
	5.4 Correctness

	6 Evaluation: How Will It Work in Practice?
	6.1 Implementation Details
	6.2 Annotation Overhead

	7 Related Work
	8 Future Work
	9 Conclusion
	References
	A Formal Properties of the Surface Language
	B Internal language
	C Compilation
	D Prototype Implementation Details
	D.1 Polymorphic Kinds
	D.2 Syntactic Sugar
	D.3 Limitations

