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Exceptional Asynchronous Session Types
Session Types without Tiers
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Session types statically guarantee that communication complies with a protocol. However, most accounts of

session typing do not account for failure, which means they are of limited use in real applications—especially

distributed applications—where failure is pervasive.

We present the first formal integration of asynchronous session types with exception handling in a functional

programming language. We define a core calculus which satisfies preservation and progress properties, is

deadlock free, confluent, and terminating.

We provide the first implementation of session types with exception handling for a fully-fledged functional

programming language, by extending the Links web programming language; our implementation draws

on existing work on effect handlers. We illustrate our approach through a running example of two-factor

authentication, and a larger example of a session-based chat application where communication occurs over

session-typed channels and disconnections are handled gracefully.
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1 INTRODUCTION
With the growth of the internet and mobile devices, as well as the failure of Moore’s law, concur-

rency and distribution have become central to many applications. Writing correct concurrent and

distributed code requires effective tools for reasoning about communication protocols. While data

types provide an effective tool for reasoning about the shape of data communicated, protocols also

require us to reason about the order in which messages are transmitted.

Session types [Honda 1993; Honda et al. 1998] are types for protocols. They describe both

the shape and order of messages. If a program type-checks according to its session type, then

it is statically guaranteed to comply with the corresponding protocol. Alas, most accounts of

session types do not handle failure, which means they are of limited use in distributed settings

where failure is pervasive. Inspired by work of Mostrous and Vasconcelos [2014], we present

the first account of asynchronous session types in a functional programming language, which

smoothly handles both distribution and failure. We present both a core calculus enjoying strong
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1:2 S. Fowler et al.

TwoFactorServer ≜
?(Username,Password).⊕{
Authenticated : ServerBody,
Challenge : !ChallengeKey.?Response.

⊕{Authenticated : ServerBody,
AccessDenied : End},

AccessDenied : End}

(a) Server Session Type

TwoFactorClient ≜
!(Username,Password).&{
Authenticated : ClientBody,
Challenge : ?ChallengeKey.!Response.
&{Authenticated : ClientBody,

AccessDenied : End},
AccessDenied : End}

(b) Client Session Type

Fig. 1. Two-factor Authentication Session Types

metatheoretical correctness properties and a practical implementation as an extension of the Links

web programming language [Cooper et al. 2007].

1.1 Session Types
We illustrate session types with a basic example of two-factor authentication. A user inputs their

credentials. If the login attempt is from a known device, then they are authenticated and may

proceed to perform privileged actions. If the login attempt is from an unrecognised device, then

the user is sent a challenge code. They enter the challenge code into a hardware key which yields a

response code. If the user responds with the correct response code, then they are authenticated.

A session type specifies the communication behaviour of one endpoint of a communication

channel participating in a dialogue (or session) with the other endpoint of the channel. Fig. 1 shows

the session types of two channel endpoints connecting a client and a server. Fig. 1a shows the

session type for the server which first receives (?) a pair of a username and password from the

client. Next, the server selects (⊕) whether to authenticate the client, issue a challenge, or reject the
credentials. If the server decides to issue a challenge, then it sends (!) the challenge string, awaits

the response, and either authenticates or rejects the client. The ServerBody type abstracts over the

remainder of the interactions, for example making a deposit or withdrawal.

Duality. The client implements the dual session type, shown in Fig. 1b. Whenever the server

receives a value, the client sends a value, and vice versa. Whenever the server makes a selection,

the client offers a choice (&), and vice versa. This duality between client and server ensures that

each communication is matched by the other party. We denote duality with an overbar; thus

TwoFactorClient = TwoFactorServer and TwoFactorServer = TwoFactorClient.

Implementing Two-factor Authentication. Let us suppose we have constructs for sending and

receiving along, and for closing, an endpoint.

sendM N : S whereM has type A, and N is an endpoint with session type !A.S
receiveM : (A × S) whereM is an endpoint with session type ?A.S
closeM : 1 whereM is an endpoint with session type End

Let us also suppose we have constructs for selecting and offering a choice:

select ℓj M : S j whereM is an endpoint with session type ⊕{ℓi : Si }i ∈I , and j ∈ I
offerM {ℓi (xi ) 7→ Ni }i ∈I : A whereM is an endpoint with session type &{ℓi : Si }i ∈I , each xi

binds an endpoint with session type Si , and each Ni has type A

Proc. ACM Program. Lang., Vol. POPL, No. 1, Article 1. Publication date: November 2019.
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Exceptional Asynchronous Session Types 1:3

We can now write a client implementation.

twoFactorClient : (Username × Password × TwoFactorClient) ⊸ 1
twoFactorClient(username, password, s) ≜

let s = send (username, password) s in
offer s {Authenticated(s) 7→ clientBody(s)

Challenge(s) 7→ let (key, s) = receive s in
let s = send (generateResponse(key)) s in
offer s {Authenticated(s) 7→ clientBody(s)

AccessDenied(s) 7→ close s; loginFailed}
AccessDenied(s) 7→ close s; loginFailed}

The twoFactorClient function takes the credentials and an endpoint of type TwoFactorClient as its
arguments. The credentials are sent along the endpoint, then three choices are offered depending on

whether the server authenticates the user, sends a two-factor challenge, or rejects the authentication

attempt. If the server authenticates the user, then the program progresses to the main application

(clientBody(s)). If the server sends a challenge, then the client receives the challenge key, and sends

the response, calculated by generateResponse. Two choices are then offered according to whether

the challenge response was successful. The rejection of an authentication attempt is part of the

protocol and not exceptional behaviour. We can also write a server implementation.

twoFactorServer : TwoFactorServer ⊸ 1
twoFactorServer(s) ≜ let ((username, password), s) = receive s in

if checkDetails(username, password) then
let s = select Authenticated s in serverBody(s)

else
let s = select AccessDenied s in close s

The twoFactorServer function takes an endpoint of type TwoFactorServer along which it receives

the credentials, which are checked using checkDetails. If the check passes, then the server proceeds

to the application body (serverBody(s)); if not, then the server notifies the client by selecting the

AccessDenied branch. This particular server implementation opts to never send a challenge request.

Statically checking session types demands a substructural type system. We discuss three options:

linear types, affine types, and linear types with explicit cancellation.

1.2 Linear Types
Simply providing constructs for sending and receiving values, and for selecting and offering choices,

is insufficient for safely implementing session types. Consider the following client:

wrongClient : TwoFactorClient ⊸ 1
wrongClient(s) ≜ let t = send ("Alice", "hunter2") s in

let t = send ("Bob", "letmein") s in . . .
Reuse of s allows a (username, password) pair to be sent along the same endpoint twice, violating

the fundamental property of session fidelity, which states that in a well-typed program, communi-

cation over an endpoint matches its session type. To maintain session fidelity and ensure that all

communication actions in a session type occur, session type systems typically require that each

endpoint is used linearly—exactly once.

Exceptions. In practice, linear session types are unrealistic. Thus far, we have assumed

checkDetails always succeeds, which may be plausible if checking against an in-memory store, but

not if connecting to a remote database. One option would be for checkDetails to return false on

Proc. ACM Program. Lang., Vol. POPL, No. 1, Article 1. Publication date: November 2019.
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1:4 S. Fowler et al.

failure, but that would lose information. Instead, suppose we have an exception handling construct.

As a first attempt, we might try to write:

exnServer1 : TwoFactorClient ⊸ 1
exnServer1(s) ≜ let ((username, password), s) = receive s in

try if checkDetails(username, password) then
let s = select Authenticated s in serverBody(s)

else
let s = select AccessDenied s in close s

catch log("Database Error")
However, the above code does not type-check and is unsafe. Linear endpoint s is not used in the

catch block and yet is still open if an exception is raised by checkDetails.
As a second attempt, we may decide to localise exception handling to the call to checkDetails.

We introduce checkDetailsOpt, which returns Some(result) if the call is successful and None if not.
checkDetailsOpt : (Username × Password) ⊸ Option(Bool)
checkDetailsOpt(username, password) ≜ try Some(checkDetails(username, password))

catch None

exnServer2 : TwoFactorServer ⊸ 1
exnServer2(s) ≜ let ((username, password), s) = receive s in

case checkDetailsOpt(username, password) of
Some(res) 7→ if res then let s = select Authenticated s in serverBody(s)

else let s = select AccessDenied s in close s
None 7→ log("Database Error")

Still the code is unsafe as it does not use s in the None branch of the case-split. However, we do

now have more precise information about the type of s , since it is unused in the try block. One

solution could be to adapt the protocol by adding an InternalError branch:

TwoFactorServerExn ≜ ?(Username,Password).⊕{
Authenticated : ServerBody,
Challenge : !ChallengeKey.Response.⊕{Authenticated : ServerBody,AccessDenied : End},
AccessDenied : End,
InternalError : End}

We could use select InternalError s in the None branch to yield a type-correct program, but doing

so would be unsatisfactory as it clutters the protocol and the implementation with failure points.

Disconnection. The problem of failure is compounded by the possibility of disconnection. On a

single machine it may be plausible to assume that communication always succeeds. In a distributed

setting this assumption is unrealistic as parties may disconnect without warning. The problem is

particularly acute in web applications as a client may close the browser at any point. In order to

adequately handle failure we must incorporate some mechanism for detecting disconnection.

1.3 Affine Types
We began by assuming linear types—each endpoint must be used exactly once. One might consider

relaxing linear types to affine types—each endpoint must be used at most once. Statically checked

affine types form the basis of the existing Rust implementation of session types [Jespersen et al.

2015] and dynamically checked affine types form the basis of the OCaml FuSe [Padovani 2017]

and Scala lchannels [Scalas and Yoshida 2016] session type libraries. Affine types present two
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Exceptional Asynchronous Session Types 1:5

quandaries arising from endpoints being silently discarded. First, a developer receives no feedback

if they accidentally forget to finish a protocol implementation. Second, if an exception is raised in

an evaluation context that captures an open endpoint then the peer may be left waiting forever.

1.4 Linear Types with Explicit Cancellation
Mostrous and Vasconcelos [2014] address the difficulties outlined above through an explicit discard
(or cancellation) operator. (They characterise their sessions as affine, but it is important not to

confuse their system with affine type systems, as in §1.3, which allow variables to be discarded

implicitly.) Their approach boils down to three key principles: endpoints can be explicitly discarded;

an exception is thrown if a communication cannot succeed because a peer endpoint has been

cancelled; and endpoint cancellations are propagated when endpoints become inaccessible due to

an exception being thrown. They introduce a process calculus including the term a (“cancel a”),
which indicates that endpoint a may no longer be used to perform communications. They provide

an exception handling construct which attempts a communication action, running an exception

handler if the action fails, and show that explicit cancellation is well-behaved: their calculus satisfies

preservation and global progress (well-typed processes never get stuck), and is confluent.

Explicit cancellation neatly handles failure while ruling out accidentally incomplete implementa-

tions and providing a mechanism for notifying peers when an exception is raised. In this paper we

take advantage of explicit cancellation to formalise and implement asynchronous session types

with failure handling in a distributed functional programming language; this is not merely a routine

adaptation of the ideas of Mostrous and Vasconcelos for the following reasons:

• They present a process calculus, but we work in a functional programming language.
• Communication in their system is synchronous, depending on a rendezvous between sender

and receiver. We require asynchronous communication, which is more amenable to imple-

mentation in a distributed setting.

• Their exception handling construct is over a single communication action and does not allow

nested exception handling. This design is difficult to reconcile with a functional language, as

it is inherently non-compositional. Our exception handling construct is compositional.

We define a core concurrent λ-calculus, Exceptional GV (EGV), with asynchronous session-typed

communication and exception handling. As with the calculus of Mostrous and Vasconcelos, an

exception is raised when a communication action fails. But our compositional exception handling

construct can be arbitrarily nested, and allows exception handling over multiple communication

actions. Using EGV, we may implement the two factor authentication server as follows:

exnServer3 : TwoFactorServer ⊸ 1
exnServer3(s) ≜ let ((username, password), s) = receive s in

try checkDetails(username, password) as res in
if res then let s = select Authenticated s in serverBody(s)
else let s = select AccessDenied s in close s

otherwise
cancel s; log("Database Error")

Following Benton and Kennedy [2001], an exception handler tryL asx inM otherwiseN takes an

explicit success continuation M as well as the usual failure continuation N . If checkDetails fails
with an exception, then s is safely discarded using cancel, which takes an endpoint and returns

the unit value. Disconnection is handled by cancelling all endpoints associated with a client. If a

peer tries to read along a cancelled endpoint then an exception is thrown.
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1:6 S. Fowler et al.

try
let s = fork (λt .cancel t) in
let (res, s) = receive s in
close s; res

as res in
print ("Result: " + res)

otherwise print "Error!"

(a) Cancellation and Exceptions

let s =
fork (λt .
let (res, t) = receive t in
close t ; res) in

let u = fork (λv .cancelv) in
let u = send s u in
close u

(b) Delegation

let f = (λx .send x s) in
raise;
f (5)

(c) Closures

Fig. 2. Failure Examples

We implement the constructs described by EGV as an extension to Links [Cooper et al. 2007],

a functional programming language for the web. Our implementation is based on a minimal

translation to effect handlers [Plotkin and Pretnar 2013].

1.5 Contributions
This paper makes five main contributions:

(1) Exceptional GV (§2), a core linear lambda calculus extended with asynchronous session-typed

channels and exception handling. We prove (§3) that the core calculus enjoys preservation,

progress, a strong form of confluence called the diamond property, and termination.

(2) Extensions to EGV supporting exception payloads, unrestricted types, and access points (§4).

(3) The design and implementation of an extension of the Links web programming language to

support tierless web applications which can communicate using session-typed channels (§5).

(4) Client and server backends for Links implementing session typing with exception handling

(§5.4), drawing on connections with effect handlers [Plotkin and Pretnar 2013].

(5) Example applications using the infrastructure (§6). In addition to our two-factor authentica-

tion workflow we outline the implementation of a chat server.

Links is open-source and freely-available. The website can be found at http://www.links-lang.org

and the source at http://www.github.com/links-lang/links. Users of the opam tool can install Links

by invoking opam install links.
The rest of the paper is structured as follows: §2 presents Exceptional GV and §3 its metatheory;

§4 discusses extensions to Exceptional GV; §5 describes the implementation; §6 presents a chat

application written in Links; §7 discusses related work; and §8 concludes.

2 EXCEPTIONAL GV
In this section, we introduce Exceptional GV (henceforth EGV). GV is a core session-typed linear

λ-calculus that has a tight correspondence with classical linear logic [Lindley and Morris 2015;

Wadler 2014]. EGV is an asynchronous variant of GV with support for failure handling.

Due to GV’s close correspondence with classical linear logic, EGV has a strong metatheory,

enjoying preservation, global progress, the diamond property, and termination. Much like the

simply-typed λ-calculus, this well-behaved core must be extended to be expressive enough to

write larger applications. Nonetheless, the core calculus alone is expressive enough to support our

two-factor authentication example, and to support server applications which gracefully handle

disconnection. In §3, we show that cancellation is well-behaved, and does not violate any of the

core properties of GV. In §4, following Lindley and Morris [2015, 2017], we extend EGV modularly

Proc. ACM Program. Lang., Vol. POPL, No. 1, Article 1. Publication date: November 2019.

http://www.links-lang.org
http://www.github.com/links-lang/links


295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Exceptional Asynchronous Session Types 1:7

Types A,B,C ::= 1 | A ⊸ B | A + B | A × B | S
Session Types S,T ::= !A.S | ?A.S | End
Variables x ,y
Terms L,M,N ::= x | λx .M | M N | () | let () = M in N | (M,N ) | let (x ,y) = M in N

| inlM | inrM | case L of {inl x 7→ M ; inr y 7→ N }
| forkM | sendM N | receiveM | closeM
| cancelM | raise | try L as x inM otherwise N

Type Environments Γ ::= · | Γ,x : A

Fig. 3. Syntax

with standard features of our implementation, some of which provide weaker guarantees. Channel

cancellation and exceptions are orthogonal to these features.

2.1 Integrating Sessions with Exceptions, by Example
Integrating session types with failure handling into a higher-order functional language requires

care. Fig. 2 illustrates three important cases: cancellation and exceptions, delegation, and closures.

In order to initiate a session, we adopt the fork primitive of Lindley and Morris [2015]. Given a

termM of type S ⊸ 1, the term forkM of type S creates a fresh channel with endpoints a of type

S and b of type S , forks a child thread that executesM a, and returns endpoint b.

Cancellation and Exceptions. Fig. 2a forks a thread which immediately cancels its endpoint. The

parent attempts to receive, but the message can never arrive so an exception is raised and the

otherwise clause is invoked.

Delegation. A central feature of π -calculus is mobility of names. In session calculi sending an

endpoint is known as session delegation. The code in Fig. 2b begins by forking a thread and returning
endpoint s . The child is passed endpoint t on which it blocks receiving. Next, the parent forks a

second child, yielding endpoint u. The second child is passed endpoint v , which is immediately

discarded using cancel. Now the parent thread sends endpoint s along u. Endpoint s will never be
received as the peer endpoint v of u has been cancelled. In turn, this renders s irretrievable and an

exception is thrown in the first child thread, as it can never receive a value.

Closures. It is crucial that cancellation plays nicely with closures. The code in Fig. 2c defines a

function f which sends its argument x along s . The parent thread then raises an exception. As s
appears in the closure bound to f , which appears in the continuation and is thus discarded, s must

be cancelled.

2.2 Syntax and Typing Rules for Terms
Fig. 3 gives the syntax of EGV. Types include unit (1), linear functions (A ⊸ B), linear sums (A+B),
linear tensor products (A × B), and session types (S).

Terms include variables (x ) and the usual introduction and elimination forms for linear functions,

unit, products, and sums. We writeM ;N as syntactic sugar for let () = M in N and let x = M in N
for (λx .N )M . The standard session typing primitives [Lindley and Morris 2015] are as follows:

forkM creates a fresh channel with endpoints a of type S and b of type S , forks a child thread that

executesM a, and returns endpoint b; sendM N sendsM along endpoint N ; receiveM receives

along endpointM ; and closeM closes an endpoint when a session is complete.

Proc. ACM Program. Lang., Vol. POPL, No. 1, Article 1. Publication date: November 2019.
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1:8 S. Fowler et al.

Term Typing Γ ⊢ M :A

T-Var

x :A ⊢ x :A

T-Abs

Γ,x :A ⊢ M :B

Γ ⊢ λx .M :A ⊸ B

T-App

Γ1 ⊢ M :A ⊸ B Γ2 ⊢ N :A

Γ1, Γ2 ⊢ M N :B

T-Unit

· ⊢ () : 1

T-LetUnit

Γ1 ⊢ M : 1
Γ2 ⊢ N :A

Γ1, Γ2 ⊢ let () = M in N :A

T-Pair

Γ1 ⊢ M :A
Γ2 ⊢ N :B

Γ1, Γ2 ⊢ (M,N ) :A × B

T-LetPair

Γ1 ⊢ M :A × B
Γ2,x :A,y :B ⊢ N :C

Γ1, Γ2 ⊢ let (x ,y) = M in N :C

T-Inl

Γ ⊢ M :A

Γ ⊢ inlM :A + B

T-Inr

Γ ⊢ M :B

Γ ⊢ inrM :A + B

T-Case

Γ1 ⊢ L :A + B Γ2,x :A ⊢ M :C Γ2,y :B ⊢ N :C

Γ1, Γ2 ⊢ case L of {inl x 7→ M ; inr y 7→ N } :C

T-Fork

Γ ⊢ M : S ⊸ 1

Γ ⊢ forkM : S

T-Send

Γ1 ⊢ M :A Γ2 ⊢ N : !A.S

Γ1, Γ2 ⊢ sendM N : S

T-Recv

Γ ⊢ M : ?A.S

Γ ⊢ receiveM : (A × S)

T-Close

Γ ⊢ M : End

Γ ⊢ closeM : 1

T-Cancel

Γ ⊢ M : S

Γ ⊢ cancelM : 1

T-Try

Γ1 ⊢ L :A Γ2,x :A ⊢ M :B Γ2 ⊢ N :B

Γ1, Γ2 ⊢ try L as x inM otherwise N :B

T-Raise

· ⊢ raise :A

Duality S

!A.S = ?A.S ?A.S = !A.S End = End

Fig. 4. Term Typing and Duality

We introduce three new term constructs to support session typingwith failure handling: cancelM
explicitly discards session endpointM ; raise raises an exception; and try L as x inM otherwiseN
evaluates L, on success binding the result to x inM and on failure evaluating N .

Explicit success continuations. Benton and Kennedy [2001] argue that:

From the points of view of programming pragmatics, rewriting and operational se-

mantics, the syntactic construct used for exception handling in ML-like programming

languages, and in much theoretical work on exceptions, has subtly undesirable features.

Benton and Kennedy show that explicit success continuations avoid the subtly undesirable features

they identify; correspondingly, we adopt their construct. Moreover, explicit success continuations

align with the definition of handlers for algebraic effects [Plotkin and Pretnar 2013] that we use in

our implementation (§5.4).

Branching and selection. Though our implementation supports select and offer directly, and we

use them in examples, we omit them from the core calculus (following Lindley and Morris [2015,

2017]) as they can be encoded using sums and delegation [Dardha et al. 2017; Kobayashi 2003].

Typing. Fig. 4 gives the typing rules for EGV. As usual, linearity is enforced by splitting environ-

ments when typing subterms, ensuring T-Var takes a singleton environment, and leaf rules T-Unit

and T-Raise take an empty environment. We write Γ1, Γ2 to mean the disjoint union of Γ1 and Γ2.
The bulk of the rules are standard for a linear λ-calculus. Session types are related by duality. The
T-Fork rule forks a thread connected by dual endpoints of a channel. The rules T-Send, T-Recv,

and T-Close capture session-typed communication.
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Runtime Types R ::= S | S♯
Names a,b, c
Terms M ::= · · · | a
Values U ,V ,W ::= a | λx .M | () | (V ,W ) | inlV | inrV
Configurations C,D, E ::= (νa)C | C ∥ D | ϕM | halt |  a | a(−→V )↭b(−→W )
Thread Flags ϕ ::= • | ◦
Top-level threads T ::= •M | halt
Auxiliary threads A ::= ◦M |  a | a(−→V )↭b(−→W )
Type Environments Γ ::= · · · | Γ,a : S
Runtime Type Environments ∆ ::= · | ∆,a : R
Evaluation Contexts E ::= [ ] | E M | V E

| let () = E inM | (E,M) | (V ,E) | let (x ,y) = E inM
| inl E | inr E | case E of {inl x 7→ M ; inr x 7→ N }
| forkE | send E M | sendV E | receive E | close E
| cancel E | try E as x inM otherwise N

Pure Contexts P ::= [ ] | P M | V P
| let () = P inM | let (x ,y) = P inM | (P ,M) | (V , P)
| inl P | inr P | case P of {inl x 7→ M ; inr x 7→ N }
| fork P | send P M | sendV P | receive P | close P
| cancel P

Thread Contexts F ::= ϕE
Configuration Contexts G ::= [ ] | (νa)G | G ∥ C

Syntactic Sugar

 V ≜  a1 ∥ · · · ∥  an where fn(V ) = {ai }i
 P ≜  a1 ∥ · · · ∥  an where fn(P) = {ai }i
 E ≜  a1 ∥ · · · ∥  an where fn(E) = {ai }i

Fig. 5. Runtime Syntax

As exceptions do not return values, the rule T-Raise allows an exception to be given any type A.
Rule T-Try embraces explicit success continuations as advocated by Benton and Kennedy [2001],

binding a result inM if L evaluates successfully. The T-Cancel rule explicitly discards an endpoint.

Naïvely implemented, cancellation violates progress: a thread could discard an endpoint, leaving a

peer waiting forever. We avoid this pitfall by raising an exception when a communication action

would wait forever due to cancellation.

2.3 Operational Semantics
We now give a small-step operational semantics for EGV.

Runtime Syntax. Fig. 5 shows the runtime syntax of EGV. We write S ♯ for the type of a channel

which can be split into two endpoints of types S and S . Runtime types R are either session types or

channel types. We extend the syntax of terms to include names ranged over by a,b, c . Depending
on context, a name a is variously used to identify a channel of type S ♯ and each of its endpoints of

type S and S . Values are standard. The semantics makes use of configurations, which are similar to

π -calculus processes: (νa)C binds name a in configuration C, and C ∥ D is the parallel composition

of configurations C and D. Program threads take the form ϕM , where ϕ is a thread flag identifying

whether the term is themain thread (•), which returns a top-level result, or a child thread (◦), which

Proc. ACM Program. Lang., Vol. POPL, No. 1, Article 1. Publication date: November 2019.
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1:10 S. Fowler et al.

Term Reduction M −→M N

E-Lam (λx .M)V −→M M{V /x}
E-Unit let () = () inM −→M M
E-Pair let (x ,y) = (V ,W ) inM −→M M{V /x ,W /y}
E-Inl case inlV of {inl x 7→ M ; inr y 7→ N } −→M M{V /x}
E-Inr case inrV of {inl x 7→ M ; inr y 7→ N } −→M N {V /y}
E-Val tryV as x inM otherwise N −→M M{V /x}
E-Lift E[M] −→M E[M ′], ifM −→M M ′

Configuration Equivalence C ≡ D
C ∥ (D ∥ E) ≡ (C ∥ D) ∥ E C ∥ D ≡ D ∥ C (νa)(νb)C ≡ (νb)(νa)C

C ∥ (νa)D ≡ (νa)(C ∥ D), if a < fn(C)

a(−→V )↭b(−→W ) ≡ b(−→W )↭a(−→V ) ◦ () ∥ C ≡ C (νa)(νb)( a ∥  b ∥ a(ϵ)↭b(ϵ)) ∥ C ≡ C
Configuration Reduction C −→ D

E-Fork F[fork (λx .M)] −→ (νa)(νb)(F[a] ∥ ◦M{b/x} ∥ a(ϵ)↭b(ϵ)), where a,b are fresh

E-Send F[sendU a] ∥ a(−→V )↭b(−→W ) −→ F[a] ∥ a(−→V )↭b(−→W ·U )
E-Receive F[receive a] ∥ a(U · −→V )↭b(−→W ) −→ F[(U ,a)] ∥ a(−→V )↭b(−→W )
E-Close (νa)(νb)(F[close a] ∥ F′[close b] ∥ a(ϵ)↭b(ϵ)) −→ F[()] ∥ F′[()]
E-Cancel F[cancel a] −→ F[()] ∥  a
E-Zap  a ∥ a(U · −→V )↭b(−→W ) −→  a ∥  U ∥ a(−→V )↭b(−→W )
E-CloseZap F[close a] ∥  b ∥ a(ϵ)↭b(ϵ) −→ F[raise] ∥  a ∥  b ∥ a(ϵ)↭b(ϵ)
E-ReceiveZap F[receive a] ∥  b ∥ a(ϵ)↭b(−→W ) −→ F[raise] ∥  a ∥  b ∥ a(ϵ)↭b(−→W )
E-Raise F[try P[raise] as x inM otherwise N ] −→ F[N ] ∥  P
E-RaiseChild ◦P[raise] −→  P
E-RaiseMain •P[raise] −→ halt ∥  P
E-LiftC G[C] −→ G[D], if C −→ D
E-LiftM ϕM −→ ϕM ′, ifM −→M M ′

Fig. 6. Reduction and Equivalence for Terms and Configurations

does not, and must return the unit value. A configuration has at most one main thread. As well

as program threads, configurations include three special forms of thread. A zapper thread ( a)
manages an endpoint a that has been cancelled, and is used to propagate failure. A halted thread
(halt) arises when the main thread has crashed due to an uncaught exception. A buffer thread
(a(−→V )↭b(−→W )) models asynchrony:

−→
V and

−→
W are sequences of values ready to be received along

endpoints a and b respectively. We sometimes find it useful to distinguish top-level threads T (main

threads and halted threads) from auxiliary threads A (child threads, zapper threads, and buffer

threads).

Environments. We extend type environments Γ to include runtime names of session type and

introduce runtime type environments ∆, which type both buffer endpoints of session type and

channels of type S ♯ for some S , but not object variables.

Contexts. Evaluation contexts E are set up for standard left-to-right call-by-value evaluation.

Pure contexts P are those evaluation contexts that include no exception handling frames. Thread
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Exceptional Asynchronous Session Types 1:11

contexts F support reduction in program threads. Configuration contexts G support reduction

under ν-binders and parallel composition.

Free Names. We let the meta operation fn(−) denote the set of free names in a term, type

environment, buffer environment, value, configuration, pure context, or evaluation context.

Syntactic Sugar. We follow the standard convention that parallel composition of configurations

associates to the right. We write  V ,  P , and  E, as shorthand for the parallel composition of zapper

threads for each free name in values V , pure contexts P , and evaluation contexts E, respectively.

Following prior work on linear functional languages with session types [Gay and Vasconcelos

2010; Lindley and Morris 2015, 2016, 2017], we present the semantics of EGV via a deterministic

reduction relation on terms (−→M), an equivalence relation on configurations (≡), and a nondeter-

ministic reduction relation on configurations (−→). We write =⇒ for the relation ≡−→≡. Fig. 6
presents reduction and equivalence rules for terms and configurations.

Term Reduction. Reduction on terms is standard call-by-value β-reduction.

Configuration Equivalence. A running program canmake use of the standard structural π -calculus
equivalence rules [Milner 1999] of associativity and commutativity of parallel composition, name

restriction reordering, and scope extrusion. Formally, equivalence is defined as the smallest con-

gruence relation satisfying the equivalence axioms in Figure 6. We incorporate a further rule to

allow buffers to be treated symmetrically and two garbage collection rules, allowing completed

child threads and cancelled empty buffers to be discarded.

Communication and Concurrency. The E-Fork rule creates two fresh names for each endpoint of

a channel, returning one name and substituting the other in the body of the spawned thread, as

well as creating a channel with two empty buffers. The E-Send and E-Receive rules send to and

receive from a buffer. The E-Close rule discards an empty buffer once a session is complete.

Cancellation. The E-Cancel rule cancels an endpoint by creating a zapper thread. The E-Zap rule

ensures that when an endpoint is cancelled, all endpoints in the buffer of the cancelled endpoint are

also cancelled: it dequeues a value from the head of the buffer and cancels any endpoints contained

within the dequeued value ( U ). It is applied repeatedly until the buffer is empty.

Raising Exceptions. Following Mostrous and Vasconcelos [2014], an exception is raised when it

would be otherwise impossible for a communication action to succeed. The E-ReceiveZap rule

raises an exception if an attempt is made to receive along an endpoint whose buffer is empty and

whose peer endpoint has been cancelled. Similarly, E-CloseZap raises an exception if an attempt is

made to close a channel where the peer endpoint has been cancelled. There is no rule for the case

where a thread tries to send a value along a cancelled endpoint; the free names in the communicated

value must eventually be cancelled, but this is achieved through E-Zap. We choose not to raise an

exception in this case since to do so would violate confluence, which we discuss in more detail

in §3.4. Not raising exceptions on message sends to dead peers is standard behaviour for languages

such as Erlang.

Handling Exceptions. The E-Raise rule invokes the otherwise clause if an exception is raised,

while also cancelling all endpoints in the enclosing pure context. If an unhandled exception occurs

in a child thread, then all free endpoints in the evaluation context are cancelled and the thread

is terminated (E-RaiseChild). If the exception is in the main thread then all free endpoints are

cancelled and the main thread reduces to halt (E-RaiseMain).
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1:12 S. Fowler et al.

2.4 Synchrony
As we are interested in writing distributed applications, we consider asynchronous session types.

However, our semantics adapts straightforwardly to the synchronous setting, where a send to a

cancelled peer must also raise an exception:

E-SyncComm F[sendV a] ∥ F′[receive a] −→ F[a] ∥ F′[(V ,a)]
E-SyncSendZap F[sendV a] ∥  a −→ F[raise] ∥  V ∥  a ∥  a
E-SyncRecvZap F[receive a] ∥  a −→ F[raise] ∥  a ∥  a

(νa)( a ∥  a) ∥ C ≡ C

3 METATHEORY
Even in the presence of channel cancellation and exceptions, EGV retains GV’s strong metathe-

ory [Lindley and Morris 2015]. The central property of session-typed systems is session fidelity:

all communication follows the prescribed session types. Session fidelity follows as a corollary of

preservation of configuration typing under reduction.

Session calculi with roots in linear logic are deadlock-free as interpreting the logical cut rule as a

combination of name restriction and parallel composition necessarily ensures acyclicity [Caires

and Pfenning 2010]. It is also possible to use deadlock-freedom to derive a global progress result.

We prove that global progress holds even in the presence of channel cancellation. (Our proof is

direct, not requiring catalyser processes [Carbone et al. 2014; Mostrous and Vasconcelos 2014].) We

also prove that EGV is confluent and terminating.

3.1 Runtime Typing
To state our main results we require typing rules for names and configurations. These are given

in Fig. 7. The configuration typing judgement has the shape Γ;∆ ⊢ϕ C, which states that under

type environment Γ, runtime environment ∆, and thread flag ϕ, configuration C is well-typed. We

additionally require that fn(Γ)∩fn(∆) = ∅. Thread flags ensure that there can be at most one top-level

thread which can return a value: • denotes a configuration with a top-level thread and ◦ denotes a

configuration without. The main thread returns the result of running a program. Any configuration

C such that Γ;∆ ⊢• C has exactly one main thread or halted thread as a subconfiguration. We write

Γ;∆ ⊢• C : A whenever the derivation of Γ;∆ ⊢• C contains a subderivation of the form

Γ′ ⊢ M : A

Γ′; . ⊢• •M
or

·; · ⊢• halt
We say that a C is a ground configuration if there exists A such that ·; · ⊢• C : A and A contains no

session types or function types.

The T-Nu rule introduces a channel name; T-Connect1 and T-Connect2 connect two config-

urations over a channel; and T-Mix composes two configurations that share no channels. The

latter three rules use the + operator to combine the flags from subconfigurations. The T-Main

and T-Child rules introduce main and child threads. Child threads always return the unit value.

The T-Halt rule types the halt configuration, which signifies that an unhandled exception has

occurred in the main thread. The T-Zap rule types a zapper thread, given a single name in the type

environment. The T-Buffer rule ensures that buffers contain values corresponding to the session

types of their endpoints. This is the only rule that consumes names from the runtime environment.

Buffers rely on two auxiliary judgements. The queue typing judgement Γ ⊢ −→V :

−→
A states that under

type environment Γ, the sequence of values
−→
V have types

−→
A . The session slicing operator S/−→A

captures reasoning about session types discounting values contained in the buffer. The session
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Exceptional Asynchronous Session Types 1:13

Term Typing Γ ⊢ M : A

T-Name

a : S ⊢ a : S

Session Slicing S/−→A

S/ϵ = S
!A.S/A · −→A = S/−→A

Queue Typing Γ ⊢ −→V :

−→
A

· ⊢ ϵ : ϵ

Γ1 ⊢ V : A Γ2 ⊢
−→
V :

−→
A

Γ1, Γ2 ⊢ V · −→V : A · −→A

Configuration Typing Γ;∆ ⊢ϕ C
T-Nu

Γ;∆,a : S♯ ⊢ϕ C
Γ;∆ ⊢ϕ (νa)C

T-Mix

Γ1;∆1 ⊢ϕ1 C Γ2;∆2 ⊢ϕ2 D
Γ1, Γ2;∆1,∆2 ⊢ϕ1+ϕ2 C ∥ D

T-Connect1

Γ1,a : S ;∆1 ⊢ϕ1 C Γ2;∆2,a : S ⊢ϕ2 D

Γ1, Γ2;∆1,∆2,a : S♯ ⊢ϕ1+ϕ2 C ∥ D

T-Connect2

Γ1;∆1,a : S ⊢ϕ1 C Γ2,a : S ;∆2 ⊢ϕ2 D

Γ1, Γ2;∆1,∆2,a : S♯ ⊢ϕ1+ϕ2 C ∥ D

T-Main

Γ ⊢ M : A

Γ; · ⊢• •M

T-Child

Γ ⊢ M : 1

Γ; · ⊢◦ ◦M

T-Halt

·; · ⊢• halt

T-Zap

a : S ; · ⊢◦  a

T-Buffer

S/−→A = S ′/−→B
Γ1 ⊢

−→
V :

−→
A Γ2 ⊢

−→
W :

−→
B

Γ1, Γ2;a : S,b : S ′ ⊢◦ a(−→V )↭b(−→W )

Flag Combination ϕ1 + ϕ2 = ϕ3

• + ◦ = • ◦ + • = •
◦ + ◦ = ◦ • + • undefined

Session Type Reduction S −→ S ′

?A.S −→ S !A.S −→ S

Environment Reduction Γ;∆ −→ Γ′;∆′

S −→ S ′

Γ,a : S ;∆ −→ Γ,a : S ′;∆

S −→ S ′

Γ;∆,a : S −→ Γ;∆,a : S ′
S −→ S ′

Γ;∆,a : S♯ −→ Γ;∆,a : S ′♯

Fig. 7. Runtime Typing

types of two buffer endpoints are compatible if they are dual up to values contained in the buffer.

The partiality of the slicing operator coupled with the duality constraint ensures that at least one

queue in a buffer is always empty. Appendix A shows an example configuration typing derivation.

3.2 Preservation
Preservation for the functional fragment of EGV is standard.

Lemma 3.1 (Preservation (Terms)). If Γ ⊢ M : A andM −→M M ′, then Γ ⊢ M ′
: A.

Given a relation R, we write R?
for its reflexive closure. We write Ψ for the restriction of type

environments Γ to contain runtime names but no variables:

Ψ ::= · | Ψ,a : S

Preservation of typing by configuration reduction holds only for closed configurations.

Theorem 3.2 (Preservation). If Ψ;∆ ⊢ϕ C and C −→ C′, then there exist Ψ′,∆′ such that
Ψ;∆ −→? Ψ′

;∆′ and Ψ′
;∆′ ⊢ϕ C′.

Proof. By induction on the derivation of C −→ C′
, making use of Lemma 3.1, and lemmas for

subconfiguration typeability and replacement. The proof cases can be found in Appendix C.1. □
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Typing and Configuration Equivalence. As is common in logically-inspired session-typed func-

tional languages [Lindley and Morris 2015, 2017], typeability of configurations is not preserved
by equivalence. Consider Γ;∆ ⊢ϕ (νa)(νb)(C ∥ (D ∥ E)) with a ∈ fn(C), b ∈ fn(D), and
a,b ∈ fn(E). But Γ;∆ ⊬ϕ (νa)(νb)((C ∥ D) ∥ E). Fortunately this looseness of the equivalence

relation is unproblematic: we may always safely re-associate parallel composition (for example,

Γ;∆ ⊢ϕ (νa)(νb)((C ∥ E) ∥ D); see Appendix C.1), and any reduction sequence which uses ill-typed

equivalences may be replaced by one that does not.

Theorem 3.3 (Preservation Modulo Eqivalence). If Ψ;∆ ⊢ϕ C, C ≡ D, andD −→ D ′, then:
(1) There exists some E ≡ D and some E ′ such that Ψ;∆ ⊢ϕ E and E −→ E ′

(2) There exist Ψ′,∆′ such that Ψ;∆ −→? Ψ′
;∆′ and Ψ′

;∆′ ⊢ϕ E ′

(3) D ′ ≡ E ′

Proof. The only non-trivial reductions are those involving a synchronisation with a buffer

(E-Send, E-Receive, E-Close, E-Zap, E-CloseZap, E-ReceiveZap). The only equivalence rule that

can lead to an ill-typed configuration is associativity of parallel composition

C ∥ (D ∥ E) ≡ (C ∥ D) ∥ E
where both compositions arise from the T-Connect1 and T-Connect2 rules. The only reason to

apply the associativity rule from left-to-right is to enable threads inside C and D to synchronise.

But for synchronisation to be possible there must exist a name a such that a ∈ fn(C) and a ∈ fn(D).
Because the left-hand-side of the equation is well-typed, we know that C and E have no names in

common, that D and E share a name, and that the right-hand-side must be well-typed as there is

still exactly one channel connecting each of the parallel compositions. The argument for applying

the rule from right-to-left is symmetric. In summary, any ill-typed use of equivalence is useless. □

3.3 Progress
To prove that EGV enjoys a strong notion of progress we identify a canonical form for configura-

tions. We prove that every well-typed configuration is equivalent to a well-typed configuration

in canonical form, and that ground configurations can always either reduce, or are equivalent to

either a value or halt.
The functional fragment of EGV enjoys progress.

Lemma 3.4 (Progress: Open Terms). If Ψ ⊢ M : A, then either:
• M is a value;
• there exists someM ′ such thatM −→M M ′; or
• M has the form E[M ′], whereM ′ is a session typing primitive of the form: forkV , sendV W ,
receiveV , closeV , or cancelV .

Proof. By induction on the derivation of Ψ ⊢ M : A. □

To reason about progress of configurations, we characterise canonical forms, which make explicit

the property that at most one name is shared between threads. Recall that A ranges over auxiliary

threads and T over top-level threads (Fig. 5). Let M range over configurations of the form:

A1 ∥ · · · ∥ Am ∥ T
Definition 3.5 (Canonical Form). A configuration C is in canonical form if there is a sequence of

names a1, . . . ,an , a sequence of configurations A1, . . . ,An , and a configuration M, such that:

C = (νa1)(A1 ∥ (νa2)(A2 ∥ · · · ∥ (νan)(An ∥ M) . . .))
where ai ∈ fn(Ai ) for each i ∈ 1..n.
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The following lemma implies that communication topologies are always acyclic.

Lemma 3.6. If Γ;∆ ⊢ϕ C and C = G[D ∥ E], then fn(D) ∩ fn(E) is either ∅ or {a} for some a.

Proof. By induction on the derivation of Γ;∆ ⊢ϕ C; the only interesting rules are those for

parallel composition. As the environments are well-formed, fn(Γ) ∩ fn(∆) = ∅. Thus, T-Connect1
and T-Connect2 allow exactly one name to be shared, whereas T-Mix forbids sharing of names. □

All well-typed configurations can be written in canonical form.

Theorem 3.7 (Canonical Forms). Given C such that Γ;∆ ⊢• C, there exists some D ≡ C such
that Γ;∆ ⊢• D and D is in canonical form.

Proof. By induction on the count of ν -bound variables, following Lindley and Morris [2015] and

making use of Lemma 3.6. The additional features of EGV do not change the essential argument.

The full proof can be found in Appendix C.2. □

Definition 3.8. We say that termM is ready to perform an action on name a ifM is about to send

on, receive on, close, or cancel a. Formally:

ready(a,M) ≜ ∃E.(M = E[sendV a]) ∨ (M = E[receive a]) ∨ (M = E[close a]) ∨ (M = E[cancel a])

Using the notion of a ready thread, we may classify a notion of progress for open configurations.

Theorem 3.9 (Progress: Open). Suppose Ψ;∆ ⊢• C, where C is in canonical form.
Let C = (νa1)(A1 ∥ (νa2)(A2 ∥ · · · ∥ (νan)(An ∥ M)) . . .)).
Either there exists some C′ such that C =⇒ C′, or:
(1) For 1 ≤ i ≤ n, each auxiliary thread Ai is either:

(a) a child thread ◦M for which there exists a ∈ {aj | 1 ≤ j ≤ i} ∪ fn(Ψ) such that ready(a,M);
(b) a zapper thread  ai ; or
(c) a buffer.

(2) M = A ′
1
∥ · · · ∥ A ′

m ∥ T such that for 1 ≤ j ≤ m:
(a) A ′

j is either:
(i) a child thread ◦N withN = () or ready(a,N ) for some a ∈ {ai | 1 ≤ i ≤ n}∪fn(Ψ)∪fn(∆);
(ii) a zapper thread  a for some a ∈ {ai | 1 ≤ i ≤ n} ∪ fn(Ψ) ∪ fn(∆); or
(iii) a buffer.

(b) Either T = •N , where N is either a value or ready(a,N ) for some a ∈ {ai | 1 ≤ i ≤
n} ∪ fn(Ψ) ∪ fn(∆); or T= halt.

Proof. The result follows from a more verbose, but finer-grained, property which we prove by

induction on the derivation of Ψ;∆ ⊢• C. Full details are in Appendix C.3. □

This theorem tells us that open reduction cannot “go wrong”. A progress theorem states that

either reduction is possible or the configuration is a value. Conditions 1(a)(b)(c) and 2(a)(b) constitute

a suitable generalisation of ‘value’.

By restricting attention to closed environments, we obtain a tighter progress property.

Theorem 3.10 (Progress: Closed). Suppose ·; · ⊢• C where C is in canonical form.
Let C = (νa1)(A1 ∥ (νa2)(A2 ∥ · · · ∥ (νan)(An ∥ M) . . .)).
Either there exists some C′ such that C =⇒ C′, or:
(1) For 1 ≤ i ≤ n, each auxiliary thread Ai is either:

(a) a child thread ◦M for someM such that ready(ai ,M); or
(b) a zapper thread  ai ; or
(c) a buffer.
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(2) Either M = •W for some valueW , orM = halt.

The above progress results do not specifically mention deadlock. However, Lemma 3.6 ensures

deadlock-freedom. Nevertheless, communication can still be blocked if an endpoint appears in the

value returned by the main thread. A conservative way of disallowing endpoints in the result is to

insist that the return type of the program be free of session types and function types (closures may

capture endpoints). All configurations of such a programs are ground configurations.

Theorem 3.11 (Global Progress). Suppose C is a ground configuration. Either there exists some
C′ such that C =⇒ C′; or C ≡ •V ; or C ≡ halt.

Proof. As a consequence of Theorem 3.10, either there exists some C′
such that C =⇒ C′

, or

C Y=⇒ and each thread Ai must be a zapper, a buffer, or ready to perform an action. If C Y=⇒, since

C is ground, by by Lemma 3.6, we have that no thread can be ready to perform an action. Thus,

each Ai must be either ◦(), a zapper, or an empty buffer. The result then follows by the garbage

collection congruences of Fig. 6. □

3.4 Confluence
EGV enjoys a strong form of confluence known as the diamond property [Barendregt 1984].

Theorem 3.12 (Diamond Property). If Ψ;∆ ⊢ϕ C, and C =⇒ D1, and C =⇒ D2, then either
D1 ≡ D2, or there exists some D3 such that D2 =⇒ D3 and D2 =⇒ D3.

Proof. First, note that −→M is entirely deterministic and hence confluent due to the call-by-

value, left-to-right ordering imposed by evaluation contexts. By linearity, we know that endpoints to

different buffers may not be shared, so it follows that communication actions on different channels

may be performed in any order. Asynchrony and cancellation introduce two critical pairs which

may be resolved in a single step; see Appendix C.4 for details. □

Remark. The system becomes non-confluent if we choose to raise an exception when sending to

a cancelled buffer. Suppose that instead of the current semantics, we were to replace E-Send with

the following two rules:

(νb)(F[sendU a] ∥ a(−→V )↭b(−→W ) ∥ ϕM) −→ (νb)(F[a] ∥ a(−→V )↭b(−→W ·U ) ∥ ϕM)
F[sendU a] ∥  b ∥ a(−→V )↭b(−→W ) −→ F[raise] ∥  b ∥  U ∥ a(−→V )↭b(−→W )

Then, sending and cancelling peer endpoints of a buffer results in a non-convergent critical pair:

(νb)(F[sendU a] ∥ F′[cancel b] ∥ a(−→V )↭b(−→W ))

(νb)(F[a] ∥ F′[cancel b] ∥ a(−→V )↭b(−→W ·U )) (νb)(F[sendU a] ∥ F′[()] ∥  b ∥ a(−→V )↭b(−→W ))

(νb)(F[a] ∥ F′[()] ∥  b ∥ a(−→V )↭b(−→W ·U )) (νb)(F[raise] ∥ F′[()] ∥  b ∥  U ∥ a(−→V )↭b(−→W ))
In either case, the endpoints contained in U will still eventually be cancelled, thus preservation

and global progress still hold. However, the lack of confluence affects exactly when the exception

is raised in context F. This decision has practical significance, in that it characterises the race

between sending a message and propagating a cancellation notification.

3.5 Termination
As EGV is linear, it has an elementary strong normalisation proof.

Theorem 3.13 (Strong Normalisation). If Ψ;∆ ⊢ϕ C, then there are no infinite =⇒ reduction
sequences from C.
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Proof. Let the size of a configuration be the sum of the sizes of the abstract syntax trees of all of

the terms contained in its main threads, child threads, and buffers, modulo exhaustively applying

the garbage collection equivalences from left-to-right. The size of a configuration is invariant under

≡ and strictly decreases under −→, hence =⇒ reduction must always terminate. □

We conjecture that the strong normalisation result continues to hold in the presence of unrestricted

types or shared channels for session initiation, but the proof technique is necessarily more involved.

We believe that a logical relations argument along the lines of Pérez et al. [2012] or a CPS translation

along the lines of Lindley and Morris [2016] would suffice.

4 EXTENSIONS
4.1 User-defined Exceptions with Payloads
In order to focus on the interplay between exceptions and session types we have thus far considered

handling a single kind of exception. In practice it can be useful to distinguish between multiple

kinds of user-defined exception, each of which may carry a payload.

Consider again handling the exception in checkDetails. An exception may arise if the database

is corrupt, or if there are too many connections. We might like to handle each case separately:

exnServer4(s) ≜
let ((username, password), s) = receive s in
try checkDetails(username, password) as res in

if res then let s = select Authenticated s in serverBody(s)
else let s = select AccessDenied s in close s

unless
DBCorrupt(y) 7→ cancel s; log("Database Corrupt: " + y)
TooManyConnections(y) 7→ cancel s; log("Too many connections: " + y)

An exception in checkDetails might be raised by the term raise DatabaseCorrupt(filename), for
example. Our approach generalises straightforwardly to handle this example.

Syntax. Figure 8 shows extensions to EGV for exceptions with payloads. We introduce a type of

exceptions, Exn. We assume a countably infinite set X ∈ E of exception names, and a type schema

function Σ(X ) = Amapping exception names to payload types. We extend raise to take a term of

type Exn as its argument. Finally, we generalise tryLasx inMotherwiseN to tryLasx inMunlessH ,

where H is an exception handler with clauses {Xi (yi ) 7→ Ni }i , such that Xi is an exception name;

yi binds the payload; and Ni is the clause to be evaluated when the exception is raised.

Typing Rules. The TP-Exn rule ensures that an exception’s payload matches its expected type.

The TP-Raise and TP-Try are the natural extensions of T-Raise and T-Try.

Semantics. Our presentation is similar to operational accounts of effect handlers; the formulation

here is inspired by that of Hillerström et al. [2017]. To define the semantics of the generalised

exception handling construct, we first introduce the auxiliary function handled(E), which defines

the exceptions handled in a given evaluation context:

handled(P) = ∅ handled(try E as x inM unless H ) = handled(E) ∪ dom(H )
handled(E) = handled(E ′), if E is not a try and E ′ is the immediate subcontext of E

The EP-Raise rule handles an exception. The side conditions ensure that the exception is caught by

the nearest matching handler and is handled by the appropriate clause. As with plain EGV, all free

names are safely discarded. The EP-RaiseChild and EP-RaiseMain rules cover the cases where an

exception is unhandled. Due to the use of the handled function we no longer require pure contexts.
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Syntax

Types A,B ::= · · · | Exn
Terms L,M,N ::= · · · | X (M) | raiseM | try L as x inM unless H
Exception Handlers H ::= {Xi (xi ) 7→ Ni }i

Runtime Syntax

Evaluation Contexts E ::= · · · | raise E | try E as x inM unless H

Term typing Σ(X ) = A Γ ⊢ M :A

TP-Exn

Σ(X ) = A Γ ⊢ M :A

Γ ⊢ X (M) : Exn

TP-Raise

Γ ⊢ M : Exn

Γ ⊢ raiseM :A

TP-Try

Γ1 ⊢ L :A
Γ2,x :A ⊢ M :B (Γ2,yi : Σ(Xi ) ⊢ Ni :B)i

Γ1, Γ2 ⊢ try L as x inM unless {Xi (yi ) 7→ Ni }i :B

Term and Configuration Reduction M −→M N C −→ D

EP-Val tryV as x inM unless H −→M M{V /x}
EP-Raise

F[try E[raise X (V )] as x inM unless H ] −→ F[N {V /y}] ∥  E where X < handled(E)
(X (y) 7→ N ) ∈ H

EP-RaiseChild ◦ E[raise X (V )] −→  E ∥  V where X < handled(E)
EP-RaiseMain • E[raise X (V )] −→ halt ∥  E ∥  V where X < handled(E)

Fig. 8. User-defined Exceptions with Payloads

All of EGV’s metatheoretic properties (preservation, global progress, confluence, and termination)

adapt straightforwardly to this extension.

4.2 Unrestricted Types and Access Points
Unrestricted (intuitionistic) types allow some values to be used in a non-linear fashion. Access

points [Gay and Vasconcelos 2010] provide a more flexible method of session initiation than

fork, allowing two threads to dynamically establish a session. Both features are useful in practice:

unrestricted types because some data is naturally multi-use, and access points because they admit

cyclic communication topologies supporting racey stateful servers such as chat servers. Access
points decouple spawning a thread from establishing a session. An access point has the unrestricted

type AP(S); we write un(A) to mean that A is unrestricted and un(Γ) if un(Ai ) for all xi : Ai ∈ Γ.
Figure 9 shows the syntax, typing rules, and reduction rules for EGV extended with access points.

Unrestricted Types. To support unrestricted types, we introduce a splitting judgement (Γ = Γ1+Γ2),
which allows variables of unrestricted type to be shared across sub-environments, but requires

linear variables to be used only in a single sub-environment. We relax rule T-Var to allow the

use of unrestricted environments, and adapt all rules containing multiple subterms to use the

splitting judgement. We detail T-App in the figure; the adaptations of other rules are similar. While

unrestricted types are useful in general, we show the specific case of unrestricted access points.

Access points. The spawnM construct spawnsM as a new thread, newS creates a fresh access

point, and requestM and acceptM generate fresh endpoints that are matched up nondeterminis-

tically to form channels. With access points we can macro-express fork:

forkM ≜ let ap = newS in spawn (M (accept ap)); request ap
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Syntax

Types A ::= · · · | AP(S)
Access Point Names z
Terms M ::= · · · | z | spawnM | newS | requestM | acceptM
Configurations C ::= · · · | (νz)C | z(X,Y)
Runtime typing environments ∆ ::= · · · | ∆, z : S

Splitting Γ = Γ1 + Γ2

· = · + ·
un(A)

Γ,x : A = (Γ1,x : A) + (Γ2,x : A)
Γ = Γ1 + Γ2

Γ,x : A = (Γ1,x : A) + Γ2

Γ = Γ1 + Γ2

Γ,x : A = Γ1 + (Γ2,x : A)

Typing Γ ⊢ M : A

T-Var

x : A ∈ Γ un(Γ)
Γ ⊢ x : A

T-App

Γ = Γ1 + Γ2 Γ1 ⊢ M : A ⊸ B Γ2 ⊢ N : A

Γ ⊢ M N : B
...

TA-Spawn

Γ ⊢ M : 1

Γ ⊢ spawnM : 1

TA-New

Γ ⊢ newS : AP(S)

TA-Reqest

Γ ⊢ M : AP(S)
Γ ⊢ requestM : S

TA-Accept

Γ ⊢ M : AP(S)
Γ ⊢ acceptM : S

Reduction C −→ D

E-Spawn F[spawnM] −→ F[()] ∥ ◦M
E-New F[newS ] −→ (νz)(F[z] ∥ z(ϵ, ϵ)) z is fresh
E-Accept F[accept z] ∥ z(X,Y) −→ (νa)(F[a] ∥ z({a} ∪ X,Y)) a is fresh

E-Reqest F[request z] ∥ z(X,Y) −→ (νa)(F[a] ∥ z(X, {a} ∪ Y)) a is fresh

E-Match z({a} ∪ X, {b} ∪ Y) −→ z(X,Y) ∥ a(ϵ)↭b(ϵ)

Configuration Typing Γ;∆ ⊢ϕ C

TA-ApName

Γ, z : AP(S);∆, z : S ⊢ϕ C
Γ;∆ ⊢ϕ (νz)C

TA-Ap

un(Γ)
Γ, z : AP(S);X : S,Y : S, z : S ⊢◦ z(X,Y)

TA-ConnectN

Γ = Γ1 + Γ2

Γ1,
−−−→
a : S ;∆1,

−−−→
b : T ⊢ϕ1 C

Γ2,
−−−→
b : T ;∆2,

−−−→
a : S ⊢ϕ2 D

Γ;∆1,∆2,
−−−−→
a : S♯ ,

−−−−→
b : T ♯ ⊢ C ∥ D

Fig. 9. Access Points

Reduction rules. We let z range over access point names. Configuration (νz)C denotes binding

access point name z in C, and z(X,Y) is an access point with name z and two sets X and Y
containing endpoints to be matched.

Rule E-Spawn creates a new child thread but, unlike fork, returns the unit value instead of

creating a channel and returning an endpoint. Rule E-New creates a new access point with fresh

name z. Rules E-Accept and E-Reqest create a fresh name a, returning the newly-created name

to the thread, and adding the name to sets X and Y respectively. Rule E-Match matches two

endpoints a and b contained in X and Y, and creates an empty buffer a(ϵ)↭b(ϵ).

Configuration typing. Configuration typing judgements again have the shape Γ;∆ ⊢ϕ C. Whereas

Γ may contain unrestricted variables, ∆ remains entirely linear.
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Read bottom-up, rule TA-ApName adds an unrestricted reference z : AP(S) to Γ, and a linear entry
z : S to ∆. Rule TA-Ap types an access point configuration. We write X : S for a1 : S, . . . ,an : S ,
where X = {a1, . . . ,an}. For an access point z(X,Y) to be well-typed, ∆ must contain z : S , along

with the names inX having type S and the names inY having type S . Rule T-ConnectN generalises

T-Connect1 and T-Connect2 to allow any number of channels to communicate across a buffer;

this therefore introduces the possibility of deadlock.

Interaction with cancellation. We need no additional reduction rules to account for interaction

between access points and channel cancellation. Should an endpoint waiting to be matched be

cancelled, it is paired as usual, and interaction with its associated buffer raises an exception:

 a ∥ F[receive b] ∥ z({a}, {b}) =⇒  a ∥ F[receive b] ∥ z(ϵ, ϵ) ∥ a(ϵ)↭b(ϵ)
=⇒  a ∥ F[raise] ∥  b ∥ z(ϵ, ϵ) ∥ a(ϵ)↭b(ϵ)

Metatheory. By decoupling process and channel creation we lose the guarantee that the com-

munication topology is acyclic, and therefore introduce the possibility of deadlock. Preservation

continues to hold—in fact, we gain a stronger preservation result since the use of TA-ConnectN

allows typeability to be preserved by equivalences.

Theorem 4.1 (Preservation Modulo Eqivalence (Access Points)).

If Ψ;∆ ⊢ϕ C and C =⇒ D, then there exist Ψ′,∆′ such that Ψ;∆ −→ Ψ′
;∆′ and Ψ′

;∆′ ⊢ϕ D.

Proof. By induction on the derivation of C −→ D and preservation by ≡; see Appendix D. □

Alas, the introduction of cyclic topologies and therefore the loss of deadlock-freedom necessarily

violates global progress. Nevertheless, a weaker form of progress still holds: if a configuration does

not reduce, then it is due to deadlock rather than cancellation.

Theorem 4.2 (Progress (Access Points)). Suppose ·; · ⊢ϕ C and C Y=⇒. Then each thread in C is
either a value; a buffer; a zapper thread; an access point; requesting or accepting on an access point; or
ready to perform a communication action.
If C contains a thread ϕM and ready(a,M) for some name a, then C contains some buffer

a(ϵ)↭b(−→W ), and C does not contain a zapper thread  b.

Proof. We can prove a similar property for open configurations by induction on the derivation

of Ψ;∆ ⊢ϕ C; the above result arises as a corollary and by inspection of the reduction rules. □

In the presence of access points confluence and termination no longer hold: access points are

nondeterministic and can encode higher-order state and hence fixpoints via Landin’s knot.

4.3 Recursive Session Types
Recursive session types support repeating protocols. The extension of EGV with recursive session

types is standard [Lindley and Morris 2016, 2017] and orthogonal to the main ideas of this paper, so

we do not spell out the details here. The implementation (§5) does provide recursive session types.

5 SESSION TYPES WITHOUT TIERS
In this section we describe our extensions to Links to support exception handling, as well as

extensions to the Links concurrency runtimes to support distribution. Links [Cooper et al. 2007] is

a statically-typed, ML-inspired, impure functional programming language designed for the web.

Links is designed to allow code for all “tiers” of a web application—client, server, and database—to

be written in a single language. Lindley and Morris [2017] extend Links with first-class session

types, relying on lightweight linear typing [Mazurak et al. 2010] and row polymorphism [Rémy
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1994]. We extend their work to account for distributed web applications, which amongst other

things necessitates handling failure.

5.1 The Links Model
Links provides a uniform language for web applications. Client code is compiled to JavaScript, server

code is interpreted, and database queries are compiled to SQL. Each client and server has its own

concurrency runtime, providing lightweight processes and message passing communication. Earlier

versions of Links [Cooper et al. 2007] invoked a fresh copy of the server per server request and

communication between client and server was via RPC calls. Advances such as WebSockets allow

socket-like bidirectional asynchronous communication between client and server, in turn allowing

richer applications where data (for example, comments on a GitHub pull request) flows more freely

between client and server. Moving to a model based on lightweight threads and session-typed

channels avoids the inversion of control inherent in RPC-style systems, and allows development to

be driven by the communication protocol.

Links now adopts a persistent application server model, incorporating client-server communica-

tion using session-typed channels. Since channels are a location-transparent abstraction, we also

optionally allow the abstraction of client-to-client communication, routed through the server.

5.2 Concurrency
Links provides typed actor-style concurrency where processes have a single incoming message

queue and can send asynchronous messages. Lindley and Morris [2017] extend Links with session-

typed channels, using Links’ process-based model but replacing actor mailboxes with session-typed

channels. We extend their implementation to support distribution and failure handling.

The client relies on continuation-passing style (CPS), trampolining, and co-operative threading.

Client code is compiled to CPS, and explicit yield instructions are inserted at every function

application. When a process has yielded a given number of times, the continuation is pushed to the

back of a queue, and the next process is pulled from the front of the queue. While modern browsers

are beginning to integrate tail-recursion, and we have updated the Links library to support it,

adoption is not yet widespread. Thus, we periodically discard the call stack using a trampoline.

Cooper [2009] discusses the Links client concurrency model in depth. The server implements

concurrency on top of the OCaml lwt library [Vouillon 2008], which provides lightweight co-

operative threading. At runtime, a channel is represented as a pair of endpoint identifiers:

(Peer endpoint, Local endpoint)

Endpoint identifiers are unique. If a channel (a,b) exists at a given location, then that location

should contain a buffer for b.

5.3 Distributed Communication
To support bidirectional communication between client and server we use WebSockets [Fette and

Melnikov 2011]. A WebSocket connection is established by a client. When a request is made and

a web page is generated, each client is assigned a unique identifier, which it uses to establish a

WebSocket connection. Any messages the server attempts to send prior to a WebSocket connection

being established are buffered and delivered after the connection is established. We use a JSON

protocol to communicate messages such as access point operations, remote session messages, and

endpoint cancellation notifications.

It is possible that one client will hold one endpoint of a channel, and another client will hold the

other endpoint. In order to provide the illusion of client-to-client communication, we route the
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communication between the two clients via the server. The server maintains a map

Endpoint ID 7→ Location

where Location is either Server or Client(ID), where ID identifies a particular client. The map

is updated if a new connection is established; an endpoint is sent as part of a message; or a client

disconnects. The server also maintains a map

Client ID 7→ [Channel]

associating each client with the publicly-facing channels residing on that client, where Channel is a
pair of endpoints (a,b) such that b is the endpoint residing on the client. Much like TCP connections,

WebSocket connections raise an event when a connection is disconnected. Upon receiving such an

event, all channels associated with the client are cancelled, and exceptions are invoked as per the

exception handling mechanism described in §2 and §5.4.

Distributed Delegation. It is possible to send endpoints as part of a message. Session delegation in

the presence of distributed communication requires some care to ensure that messages are delivered

to the correct participant; our implementation adapts the algorithms of Hu et al. [2008]. Further

details can be found in Appendix E.

5.4 Session Typing with Failure Handling
Effect Handlers. Effect handlers [Plotkin and Pretnar 2013] provide a modular approach to

programming with user-defined effects. Exception handlers are a special case of effect handlers.

Consequently, we leverage the existing implementation of effect handlers in Links [Hillerström

and Lindley 2016; Hillerström et al. 2017]. In §4 we generalise try − as − in − otherwise− to

accommodate user defined exceptions. Effect handlers generalise further to support what amounts

to resumable exceptions in which the handler has access not only to a payload, but also the delimited

continuation (i.e. evaluation context) from the point at which the exception was raised up to

the handler, allowing effect handlers to implement arbitrary side-effects; not just exceptions. We

translate exception handling as follows.

JraiseK = do raise Jtry L as x inM otherwise N K = handle JLKwith
return x 7→ JMK
raise r 7→ cancel r ; JN K

The introduction form do op invokes an operation op (which may represent raising an exception or

some other effect). The elimination form handleM withH runs effect handler H on the computa-

tionM . In general an effect handler H consists of a return clause of the form return x 7→ N , which

behaves just like the success continuation (x in N ) of an exception handler, and a collection of

operation clauses, each of the form op ®p r 7→ N , specifying how to handle an operation analogously

to how exception handler clauses specify how to handle an exception, except that as well as binding

payload parameters ®p, an operation clause also binds a resumption parameter r . The resumption r
binds a closure representing the continuation up to the nearest enclosing effect handler, allowing

control to pass back to the program after handling the effect. In the case of our translation, the

raise operation has no payload, and rather than invoking the resumption r we cancel it, assuming

the natural extension of cancellation to arbitrary linear values, whereby all free names in the value

are cancelled (r being bound to the current evaluation context reified as a value). A formalisation

of linear effect handlers for session typing is outside the scope of this paper and left as future work.
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Raising exceptions. An exception may be raised either explicitly through an invocation of raise
(desugared to do raise), or through a blocked receive call where the peer endpoint has been

cancelled. Thus, we know statically where any exceptions may be raised. To support cancella-

tion of closures on the client, we adorn closures with an explicit environment field that can be

directly inspected. Currently, Links does not closure-convert continuations on the client, so we

use a workaround to simulate cancelling a resumption (as required by the translation J−K). When

compiling client code, for each occurrence of do raise, we compile a function that inspects all

affected variables and cancels any affected endpoints in the continuation. For each occurrence of

receive, we compile a continuation to cancel affected endpoints to be invoked by the runtime

system if the receive operation fails.

5.5 Distributed Exceptions
Our implementation fully supports the semantics described in §2. The concurrency runtime at each

location maintains a set of cancelled endpoints.

Cancellation. Suppose endpoint a is connected to peer endpoint b. If a is cancelled, then all

endpoints in the queue for a are also cancelled according to the E-Zap rule. If a and b are at the

same location, then a is added to the set of cancelled endpoints. If they are at different locations,

then a cancellation notification for a is routed to b’s location. Zapper threads are modelled in the

implementation by recording sets of cancelled endpoints and propagating cancellation messages.

Failed communications. Again, suppose endpoint a is connected to peer endpoint b. Should a

process attempt to read from a when the buffer for a is empty, then the runtime will check to see

whether b is in the set of cancelled endpoints. If so, then a is cancelled and an exception is raised in

the blocked process; if not, the process is suspended until a message is ready. Should the runtime

later add b to the set of cancelled endpoints, then again a is cancelled and an exception raised.

These actions implement the E-ReceiveZap rule.

Disconnection. To handle disconnection, the server maintains a map from client IDs to the list of

endpoints at the associated client. WebSockets—much like TCP sockets—raise a closed event on

disconnection. Consequently, when a connection is closed, the runtime looks up the endpoints

owned by the terminated client and notifies all other clients containing the peer endpoints.

6 EXAMPLE: A CHAT APPLICATION
In this section we outline the design and implementation of a web-based chat application in Links

making use of distributed session-typed channels. We write the following informal specification:

• To initialise, a client must:

– connect to the chat server; then

– send a nickname; then

– receive the current topic and list of nicknames.

• After initialisation the client is connected and can:

– send a chat message to the room; or

– change the room’s topic; or

– receive messages from other users; or

– receive changes of topic from other users.

• Clients cannot connect with a nickname that is already in use in the room.

• All participants should be notified whenever a participant joins or leaves the room.

Proc. ACM Program. Lang., Vol. POPL, No. 1, Article 1. Publication date: November 2019.



1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 S. Fowler et al.

typename ChatClient = !Nickname.

[&| Join:

?(Topic, [Nickname], ClientReceive).ClientSend,

Nope:End |&];

typename ClientReceive =

[&| Join : ?Nickname .ClientReceive,

Chat : ?(Nickname, Message).ClientReceive,

NewTopic : ?Topic .ClientReceive,

Leave : ?Nickname .ClientReceive

|&];

typename ClientSend =

[+| Chat : ?Message.ClientSend,

Topic : ?Topic .ClientSend |+];

typename ChatServer = ~ChatClient;

typename WorkerSend = ~ClientReceive;

typename WorkerReceive = ~ClientSend;

Fig. 10. Chat Application Session Types

Session Types. We can encode much of the specification more precisely as a session type, as shown

in Figure 10. The client begins by sending a nickname, and then offers the server a choice of a Join

message or a Nopemessage. In the former case, the client then receives a triple containing the current

topic, a list of existing nicknames, and an endpoint (of type ClientReceive) for receiving further

updates from the server; and may then continue to send messages to the server as a connected

client endpoint (of type ClientSend). (Observe the essential use of session delegation.) In the latter

case, communication is terminated. The intention is that the server will respond with Nope if a client

with the supplied nickname is already in the chat room (the details of this check are part of the

implementation, not part of the communication protocol).

The ClientReceive endpoint allows the client to offer a choice of four different messages: Join,

Chat, NewTopic, or Leave. In each case the client then receives a payload (depending on the choice, a

nickname, pair of nickname and chat message, or topic change) before offering another choice. The

ClientSend endpoint allows the client to select between two different messages: Chat and NewTopic. In

each case the client subsequently sends a payload (a chat message or a new topic) before selecting

another choice. The chat server communicates with the client along endpoints with dual types.

How can session types help? The connect function (Fig. 11a) is run when a client enters a nick-

name. First, the client requests a fresh channel of type ChatClient from access point wap of type

AP(ChatServer). Next, the client obtains the content of the DOM input box for the nickname by

calling getInputContents(nameBoxId), where nameBoxId is the DOM ID for the nickname entry box.

Next, the client sends the nickname to the server and waits for a response; in the case of a Join

message, the client receives the room data and an incoming message channel, and calls the beginChat

function. In the case of a Nope message, an error is printed and the session ends.

Now, suppose the developer forgets to write code to check the server response (Fig. 11b). This

implementation is incorrect since there is a communication mismatch: the server is expecting to
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fun connect() {

var s = request(wap);

var nick = getInputContents(nameBoxId);

var s = send(nick, s);

offer(s) {

case Join(s) ->

var ((topic, nicks, incoming), s) =

receive(s);

beginChat(topic, nicks, incoming, s)

case Nope(s) ->

print("Nickname '" ^^ nick ^^ "' already taken")

}

}

(a) Correct connect function

fun connect() {

var s = request(wap);

var nick = getInputContents(nameBoxId);

var s = send(nick, s);

var ((topic, nicks, incoming), s) =

receive(s);

beginChat(topic, nicks, incoming, s)

}

(b) Incorrect connect function

Fig. 11. Implementations of connect function

accept or reject the request to join the room, whereas the client is expecting to receive data about

the room. However, since s has type ChatClient but does not follow the protocol, Links catches the

communication mismatch statically. Similarly, Links will statically detect an unused endpoint (e.g.

the developer forgets to finish a protocol) or an endpoint being used more than once, as in §1.2.

Architecture. Figure 12a depicts the architecture of the chat application. Each client has a process

which sends messages over a distributed session channel of type ClientSend to its own worker

process on the server, which in turn sends internal messages to a supervisor process containing the

state of the chat room. These messages trigger the supervisor process to broadcast a message to all

chat clients over a channel of type ~ClientReceive. As is evident from the figure, the communication

topology is cyclic; in order to construct this topology the code makes essential use of access points.

Disconnection. Figure 12b shows the implementation of a worker process which receives messages

from a client. The worker takes the nickname of the client, as well as a channel endpoint of type

WorkerReceive (which is the dual of ClientSend). The server offers the client a choice of sending a

message (Chat), or changing topic (NewTopic); in each case, the associated data is received and a

message dispatched to the supervisor process by calling chat or newTopic. When a client closes its

connection to the server, all associated endpoints are cancelled. Consequently, an exception will

be raised when evaluating the offer or receive expressions. To handle disconnection, we wrap the

function in an exception handler, which recursively calls worker if the interaction is successful, and

notifies the supervisor that the user has left via a call to leave if an exception is raised.

Additional examples. We have concentrated on the chat server example for exposition, but

have also implemented an extended chat server and a multiplayer game. These can be found

at http://www.github.com/SimonJF/distributed-links-examples.

7 RELATEDWORK
7.1 Session Types with Failure Handling
Carbone et al. [2008] provide the first formal basis for exceptions in a session-typed process calculus.

Our approach provides significant simplifications: zapper threads provide a simpler semantics and

remove the need for their queue levels, meta-reduction relation, and liveness protocol.
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Client 1

Client 2

Worker 1

Worker 2

Supervisor

Client 1

Client 2

Server

CC

S

CS

CC CS

CR

CR

S

CC = ChatClient     CS = ChatServer     CR = ClientReceive     S = Supervisor

(a) Architecture

sig worker : (Nickname, WorkerReceive) ~> ()

fun worker(nick, c) {

try {

offer(c) {

case Chat(c) ->

var (msg, c) = receive(c);

chat(nick, msg); c

case NewTopic(c) ->

var (topic, c) = receive(c);

newTopic(topic); c

}

} as (c) in {

worker(nick, c)

} otherwise { leave(nick) }

}

(b) Worker Implementation

Fig. 12. Chat Application Architecture and Worker Implementation

Our work draws on that of Mostrous and Vasconcelos [2014], who introduce the idea of cancella-

tion. Our work differs from theirs in several key ways. Their system is a process calculus; ours is

a λ-calculus. Their channels are synchronous; ours are asynchronous. Their exception handling

construct scopes over a single action; ours scopes over an arbitrary computation.

Caires and Pérez [2017] describe a core, logically-inspired process calculus supporting non-

determinism and abortable behaviours encoded via a nondeterminism modality. Processes may

either provide or not provide a prescribed behaviour; if a process attempts to consume a behaviour

that is not provided, then its linear continuation is safely discarded by propagating the failure of

sessions contained within the continuation. Their approach is similar in spirit to our zapper threads.

Additionally, they give a core λ-calculus with abortable behaviours and exception handling, and

define a type-preserving translation into their core process calculus.

Our approach differs in several important ways. First, our semantics is asynchronous, handling

the intricacies involved with cancelling values contained in message queues. Second, we give a

direct semantics to EGV, whereas Caires and Pérez rely on a translation into their underlying

process calculus. Third, to handle the possibility of disconnection, our calculus allows any channel

to be discarded, whereas they opt for an approach more closely resembling checked exceptions,

aided by a monadic presentation.

The above works are all theoretical. Backed by our theoretical development, our implementation

integrates session types and exceptions, extending Links.

Multiparty Session Types. Fowler [2016] describes an Erlang implementation of the Multiparty

Session Actor framework proposed by Neykova and Yoshida [2014, 2017b] with a limited form of

failure recovery; Neykova and Yoshida [2017a] present a more comprehensive approach, based

on refining existing Erlang supervision strategies. Chen et al. [2016] introduce a formalism based

on multiparty session types [Honda et al. 2016] that handles partial failures by transforming

programs to detect possible failures at a set of statically determined synchronisation points. These

approaches rely on a fixed communication topology, using mechanisms such as dependency graphs

or synchronisation points to determine which participants are affected when one participant fails.

Delegation implies location transparency, thus we must consider dynamic topologies.
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7.2 Session Types and Distribution
Hu et al. [2008] introduce Session Java (SJ), which allows distributed session-based communication

in the Java programming language, making use of the Polyglot framework [Nystrom et al. 2003]

to statically check session types. Hu et al. are the first to present the challenges of distributed

delegation along with distributed algorithms which address those challenges. We adapt their

algorithms to web applications. SJ restricts communication to a fixed set of simple types; Links

allows arbitrary values to be sent. SJ provides statically scoped exception handling, propagating

exceptions to ensure liveness (but this feature is not formalised).

Scalas and Yoshida [2016] introduce lchannels, a lightweight implementation of session types

in Scala. To maximise applicability of their approach and not require any modifications to Scala,

their approach detects duplicate endpoint use at runtime. By virtue of the translation into the

linear π -calculus introduced by Kobayashi [2003] and later expanded on by Dardha et al. [2017],

lchannels is particularly amenable to distribution. Scalas et al. [2017] build upon this approach to

translate a multiparty session calculus into the linear π -calculus, providing the first distributed

implementation of multiparty session types to support delegation.

7.3 Session Types via Affine Types
Rust [Matsakis and Klock II 2014] provides ownership types [Clarke 2003], ensuring that an object has
at most one owner. Jespersen et al. [2015] use Rust’s ownership types to encode affine session types,

but since affine endpoints can be discarded implicitly, their library does not guarantee progress.

Although it is not possible to distinguish between dynamic failure and a developer forgetting to

finish an implementation, our semantics can be implemented using Rust’s destructor mechanism,

enabling a progress property [Kokke 2018].

8 CONCLUSION AND FUTUREWORK
Session types allow protocol conformance to be checked statically. The prevailing consensus has

hitherto been to require that endpoints be used linearly to enforce session fidelity and prevent

premature discarding of open channels. We have argued that in order to write realistic applications

in the presence of distribution and failure, linearity should be supplemented with an explicit
cancellation operation. We show that, even in the presence of channel cancellation, our core

calculus is well-behaved, being deadlock-free, type sound, confluent, and terminating.

In tandem with the formal development, we have developed an extension of the Links pro-

gramming language to support distributed session-based communication for web applications,

thus providing the first implementation of asynchronous session types with failure handling in a

functional programming language. Our implementation leverages recent work on effect handlers.

Future work. Our implementation combines linearity and effect handlers. Linear effect handlers

are new, and a ripe area of study in their own right; we plan to formalise session-typed concurrency

and failure handling directly in terms of linear effect handlers. Multiparty session types [Honda

et al. 2016] are yet to be included as a first-class construct of a core functional language. A natural

starting point is to identify a λ-calculus into which we can translate the MCP calculus of Carbone

et al. [2016] and then investigate how our approach adapts to the multiparty setting.
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A EXAMPLE RUNTIME TYPING DERIVATION
We give an example derivation to illustrate how channels are introduced by name restrictions

and then split into endpoints using the T-Connecti rules. We assume suitable encodings of linear

booleans and integers using linear sums and products.

Let us assume we have derivations for:

Γ1,a : !Int.End ⊢◦ E[send 5 a] : 1 Γ2,b : ?Bool.?Int.End ⊢ E ′[receive b] : A · ⊢ true : Bool
We construct a derivation D of (νa)(νb)(◦E[send 5 a] ∥ (a(ϵ)↭b(true) ∥ •E ′[receive b])).

First let D1 be the following subderivation.

?Int.End/ϵ = !Bool.!Int.End/Bool · ⊢ ϵ : ϵ · ⊢ true : Bool
·;a : ?Int.End, b : !Bool.!Int.End ⊢◦ a(ϵ )↭b(true)

T-Buffer

Then let D2 be the following subderviation.

T-Connect2

D1

Γ2, b : ?Bool.?Int.End ⊢ E′[receive b] : A
Γ2, b : ?Bool.?Int.End; · ⊢• •E′[receive b]

T-Main

Γ2;a : ?Int.End, b : (?Bool.?Int.End)♯ ⊢• a(ϵ )↭b(true) ∥ •E′[receive b]

The complete derivation D is as follows.

T-Thread

Γ1, a : !Int.End ⊢◦ E[send 5 a] : 1
Γ1, a : !Int.End; · ⊢◦ E[send 5 a] D2

Γ1, Γ2;a : (!Int.End)♯, b : (?Bool.?Int.End)♯ ⊢◦ ◦E[send 5 a] ∥ (a(ϵ )↭b(true) ∥ •E′[receive b])
T-Connect1

Γ1, Γ2;a : (!Int.End)♯ ⊢• (νb)(◦E[send 5 a] ∥ (a(ϵ )↭b(true) ∥ •E′[receive b]))
T-Nu

Γ1, Γ2; · ⊢• •(νa)(νb)(◦E[send 5 a] ∥ (a(ϵ )↭b(true) ∥ •E′[receive b]))
T-Nu

Let us read D bottom-upwards. The two instances of the T-Nu rule introduce channels a and b
into the runtime environment. The T-Connect1 rule splits channel a into dual endpoints: on the

left the endpoint a appears in the type environment and the sending thread; on the right the end

point a appears in the runtime environment and the buffer. The T-Connect2 rule splits channel b
into dual endpoints: on the left the endpoint b appears in the runtime environment and the buffer;

on the right the endpoint b appears in the type environment and the receiving thread.

Proc. ACM Program. Lang., Vol. POPL, No. 1, Article 1. Publication date: November 2019.



1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1:32 S. Fowler et al.

B DEADLOCK-FREEDOM
Here we give a graph-theoretic account of deadlock-freedom in EGV, independent of our notion of

progress, following Lindley and Morris [2015].

Due to the asynchronous semantics of EGV, sending on an endpoint and cancelling an endpoint

reduce immediately. Deadlocks may therefore only occur when cycles occur receiving or closing an

endpoint. We begin by classifying the notion of a blocked thread: that is, a thread which is blocked

performing an action on some channel endpoint.

Definition B.1. We say that term M is blocked on name a if M is about to receive on or close a.
Formally:

blocked(a,M) ≜ ∃E. (M = E[receive a]) ∨ (M = E[close a])

Given the notion of a blocked thread, we may characterise the notion of a dependency between

communication actions.

Definition B.2. Let C be a configuration such that a and b are not bound by C. We say that a
depends on b in C, written depends(a,b,C), if C is a buffer connecting a and b, or a appears in

some thread blocked on b, or if a depends on some name c which depends on b. Formally:

• depends(a,b,a(−→V )↭b(−→W ))
• depends(a,b,b(−→W )↭a(−→V ))
• depends(a,b,ϕM) ≜ blocked(b,M) ∧ a ∈ fn(M)
• depends(a,b,C) ≜ ∃G,D, E, c .C ≡ G[D ∥ E] ∧ depends(a, c,D) ∧ depends(c,b, E)

Remark. The above definition of dependency is an over-approximation to the intuitive notion, as

a buffer need not have dependencies in both directions, but for our purposes this does not matter.

Definition B.3. We say that a configuration is deadlocked if it contains cyclic dependencies:

deadlocked(C) ≜ ∃D, E,a,b . C ≡ G[D ∥ E] ∧ depends(a,b,D) ∧ depends(b,a, E)

With these definitions in place, we can show that EGV configurations are deadlock-free.

Lemma B.4. If depends(a,b,C) then a,b ∈ fn(C).

Proof. By induction on the definition of depends(a,b,C). □

Theorem B.5. If Γ;∆ ⊢ C, then ¬deadlocked(C).

Proof. By contradiction. Suppose deadlocked(C), that is:
∃D, E,a,b . C ≡ G[D ∥ E] ∧ depends(a,b,D) ∧ depends(b,a, E)

Thus by Lemma B.4, a,b ∈ fn(D) and b,a ∈ fn(E). Then by Lemma 3.6, C must be ill-typed. □

Remark. We regard blocked threads as deadlocked only if there is a cyclic dependency. It is

perfectly possible for a configuration to include blocked threads without there being a deadlock.

• Deadlock-free open terms can block on external communication along a free endpoint.

• Deadlock-free closed terms can block on communication along an endpoint that appears in

the return value of a program. This also amounts to being blocked on external communication.

All blocked threads can be ruled out by restricting the type of a program to be free of both session

types and function types (the latter is necessary as closures can capture endpoints).
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C SUPPLEMENT TO SECTION 3 (METATHEORY OF EGV)
C.1 Preservation
In this section, we present proofs that typeability is preserved by configuration reduction.

C.1.1 Equivalence. We begin by describing the properties of configuration equivalence. As de-

scribed in §3, typeability of configurations is not preserved by equivalence. Nonetheless, Lemma C.1

shows that only the associativity of parallel composition may cause a configuration to be ill-typed.

Lemma C.1. If Γ;∆ ⊢ϕ C and C ≡ D, where the derivation of C ≡ D does not contain a use of the
axiom for associativity, then Γ;∆ ⊢ϕ D.

Proof. By induction on the derivation of C ≡ D, examining the equivalence in both directions

to account for symmetry. We show that a typing derivation of the left-hand side of an equivalence

rule implies the existence of the right-hand side, and vice versa.

That reflexivity, transitivity, and symmetry of the equivalence relation respect typing follows

immediately because equality of typing derivations is an equivalence relation.

We make implicit use of the induction hypothesis.

Congruence rules

Case Name restriction

C ≡ D
(νa)C ≡ (νa)D

Γ;∆,a : S ♯ ⊢ϕ C
Γ;∆ ⊢ϕ (νa)C ⇐⇒

Γ;∆,a : S ♯ ⊢ϕ D
Γ;∆ ⊢ϕ (νa)D

Case Parallel Composition

C ≡ D
C ∥ E ≡ D ∥ E

There are three subcases, based on whether the parallel composition arises from T-Connect1,

T-Connect2, or T-Mix.

Subcase T-Mix

Γ1;∆1 ⊢ϕ1 C Γ2;∆2 ⊢ϕ2 E
Γ1, Γ2;∆1,∆2 ⊢ϕ1+ϕ2 C ∥ E ⇐⇒

Γ1;∆1 ⊢ϕ1 D Γ2;∆2 ⊢ϕ2 E
Γ1, Γ2;∆1,∆2 ⊢ϕ1+ϕ2 D ∥ E

Subcase T-Connect1

Γ1,a : S ;∆1 ⊢ϕ1 C Γ2;∆2,a : S ⊢ϕ2 E
Γ1, Γ2;∆1,∆2,a : S ♯ ⊢ϕ1+ϕ2 C ∥ E ⇐⇒

Γ1,a : S ;∆1 ⊢ϕ1 D Γ2;∆2,a : S ⊢ϕ2 E
Γ1, Γ2;∆1,∆2,a : S ♯ ⊢ϕ1+ϕ2 D ∥ E

Subcase T-Connect2

Γ1;∆1,a : S ⊢ϕ1 C Γ2,a : S ;∆2 ⊢ϕ2 E
Γ1, Γ2;∆1,∆2,a : S ♯ ⊢ϕ1+ϕ2 C ∥ E ⇐⇒

Γ1;∆1,a : S ⊢ϕ1 D Γ2,a : S ;∆2 ⊢ϕ2 E
Γ1, Γ2;∆1,∆2,a : S ♯ ⊢ϕ1+ϕ2 D ∥ E
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Equivalence Axioms

Case C ∥ D ≡ D ∥ C

There are three subcases, based on which rule is used for parallel composition.

Subcase T-Mix

Γ1;∆1 ⊢ϕ1 C Γ2;∆2 ⊢ϕ2 D
Γ1, Γ2;∆1,∆2 ⊢ϕ1+ϕ2 C ∥ D

⇐⇒
Γ2;∆2 ⊢ϕ2 D Γ1;∆1 ⊢ϕ1 C
Γ1, Γ2;∆1,∆2 ⊢ϕ2+ϕ1 D ∥ C

Subcase T-Connect1

Γ1,a : S ;∆1 ⊢ϕ1 C Γ2;∆2,a : S ⊢ϕ2 D
Γ1, Γ2;∆1,∆2,a : S ♯ ⊢ϕ1+ϕ2 C ∥ D

⇐⇒
Γ2;∆2,a : S ⊢ϕ2 D Γ1,a : S ;∆1 ⊢ϕ1 C

Γ1, Γ2;∆1,∆2,a : S ♯ ⊢ϕ2+ϕ1 D ∥ C

Subcase T-Connect2

Γ1;∆1,a : S ⊢ϕ1 C Γ2,a : S ;∆2 ⊢ϕ2 D
Γ1, Γ2;∆1,∆2,a : S ♯ ⊢ϕ1+ϕ2 C ∥ D

⇐⇒
Γ2,a : S ;∆2 ⊢ϕ2 D Γ1;∆1,a : S ⊢ϕ1 C

Γ1, Γ2;∆1,∆2,a : S ♯ ⊢ϕ2+ϕ1 D ∥ C

Case C ∥ (νa)D ≡ (νa)(C ∥ D) if a < fn(C)

There are again three subcases based on which parallel composition rule is used. The exact rule

does not affect the discussion, so without loss of generality we assume this is T-Mix.

Γ1;∆1 ⊢ϕ1 C
Γ2;∆2,a : S ♯ ⊢ϕ2 D
Γ2;∆2 ⊢ϕ2 (νa)D

Γ1, Γ2;∆1,∆2 ⊢ϕ1+ϕ2 C ∥ (νa)D ⇐⇒

Γ1;∆1 ⊢ϕ1 C Γ2;∆2,a : S ♯ ⊢ϕ2 D
Γ1, Γ2;∆1,∆2,a : S ♯ ⊢ϕ1+ϕ2 C ∥ D
Γ1, Γ2;∆1,∆2 ⊢ϕ1+ϕ2 (νa)(C ∥ D)

In the left-to-right direction, that Γ1, Γ2;∆1,∆2,a : S ♯ is well-defined follows because a < fn(C).

Case (νa)(νb)C ≡ (νb)(νa)C

Γ;∆,a : S ♯,b : T ♯ ⊢ϕ C
Γ;∆,a : S ♯ ⊢ϕ (νb)C
Γ;∆ ⊢ϕ (νa)(νb)C ⇐⇒

Γ;∆,b : T ♯,a : S ♯ ⊢ϕ C
Γ;∆,b : T ♯ ⊢ϕ (νa)C
Γ;∆ ⊢ϕ (νb)(νa)C

Case a(−→V )↭b(−→W ) ≡ b(−→W )↭a(−→V )

S/−→A = T /−→B Γ1 ⊢
−→
V :

−→
A Γ2 ⊢

−→
W :

−→
B

Γ1, Γ2;a : S,b : T ⊢◦ a(−→V )↭b(−→W ) ⇐⇒

T /−→B = S/−→A Γ2 ⊢
−→
W :

−→
B Γ1 ⊢

−→
V :

−→
A

Γ1, Γ2;a : S,b : T ⊢◦ b(−→W )↭a(−→V )
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The above holds because S/−→A = T /−→B ⇐⇒ T /−→B = S/−→A :

S/−→A = T /−→B
⇐⇒ (duality)

S/−→A = T /−→B
⇐⇒ (duality is involutive)

S/−→A = T /−→B
⇐⇒ (equality is symmetric)

T /−→B = S/−→A

Case ◦() ∥ C ≡ C

· ⊢ () : 1
·; · ⊢◦ ◦() Γ;∆ ⊢ϕ C

Γ;∆ ⊢ϕ ◦() ∥ C ⇐⇒ Γ;∆ ⊢ϕ C

Case (νa)(νb)( a ∥  b ∥ a(ϵ)↭b(ϵ)) ∥ C ≡ C

a : S ; · ⊢◦  a
b : T ; · ⊢◦  b

S/ϵ = T /ϵ · ⊢ ϵ : ϵ · ⊢ ϵ : ϵ

·;a : S, b : T ⊢◦ a(ϵ )↭b(ϵ )
·;a : S, b : T ♯ ⊢◦  b ∥ a(ϵ )↭b(ϵ )

·;a : S ♯, b : T ♯ ⊢◦  a ∥  b ∥ a(ϵ )↭b(ϵ )
·;a : S ♯ ⊢◦ (νb)( a ∥  b ∥ a(ϵ )↭b(ϵ ))
·; · ⊢◦ (νa)(νb)( a ∥  b ∥ a(ϵ )↭b(ϵ )) Γ;∆ ⊢ϕ C

Γ;∆ ⊢ϕ (νa)(νb)( a ∥  b ∥ a(ϵ )↭b(ϵ )) ∥ C ⇐⇒ Γ;∆ ⊢ϕ C

□

While it is true that re-associating parallel composition may cause a configuration to be ill-typed,

Lemma C.2 shows that it is always possible to re-associate parallel composition either directly, or

by first commuting two subconfigurations.

Lemma C.2 (Associativity).

• If Γ;∆ ⊢ϕ C ∥ (D ∥ E), then either Γ;∆ ⊢ϕ (C ∥ D) ∥ E or Γ;∆ ⊢ϕ (C ∥ E) ∥ D.
• If Γ;∆ ⊢ϕ (C ∥ D) ∥ E, then either Γ;∆ ⊢ϕ C ∥ (D ∥ E) or Γ;∆ ⊢ϕ D ∥ (C ∥ E).

Proof. The cases where either parallel composition arises by T-Mix are unproblematic and can

be re-associated without jeopardising typeability. Therefore, we concentrate on the cases where

both compositions arise via T-Connecti .

Case C ∥ (D ∥ E)
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By the assumption that Γ;∆ ⊢ϕ C ∥ (D ∥ E) we have that Γ = Γ1, Γ2, Γ3, and ∆ = ∆1,∆2,∆3,a :

S ♯,b : T ♯
, and ϕ = ϕ1 + ϕ2 + ϕ3. There are 8 cases, based on whether a,b ∈ fn(C) or a,b ∈ fn(D)

(it cannot be the case that a,b ∈ fn(E), as E only occurs under a single parallel composition), and

the exact dualisation (i.e., whether composition happens via T-Connect1 or T-Connect2).

Of these, we are only interested in the cases where the sharing of the names differs, as opposed

to the dualisation. Thus, we consider the following two cases, where both compositions occur using

T-Connect1:

(1) Γ1,a : S ;∆1 ⊢ϕ1 C, and Γ2,b : T ;∆2,a : S ⊢ϕ2 D, and Γ3;∆3,b : T ⊢ϕ3 E
(2) Γ1,a : S ;∆1 ⊢ϕ1 C, and Γ2,b : T ;∆2 ⊢ϕ2 D, and Γ3;∆3,a : S,b : T ⊢ϕ3 E
Subcase a ∈ fn(C),a,b ∈ D,b ∈ E

Γ1,a : S ;∆1 ⊢ϕ1 C
Γ2,b : T ;∆2,a : S ⊢ϕ2 D Γ3;∆3,b : T ⊢ϕ3 E

Γ2, Γ3;∆2,∆3,a : S,b : T ♯ ⊢ϕ2+ϕ3 D ∥ E
Γ1, Γ2, Γ3;∆1,∆2,∆3,a : S ♯,b : T ♯ ⊢ϕ1+ϕ2+ϕ3 C ∥ (D ∥ E)

As D contains both a and b, associativity does not alter the sharing of names and may be applied

safely.

Γ1,a : S ;∆1 ⊢ϕ1 C Γ2,b : T ;∆2,a : S ⊢ϕ2 D
Γ1, Γ2,b : T ;∆1,∆2,a : S ♯ ⊢ϕ1+ϕ2 C ∥ D Γ3;∆3,b : T ⊢ϕ3 E

Γ1, Γ2, Γ3;∆1,∆2,∆3,a : S ♯,b : T ♯ ⊢ϕ1+ϕ2+ϕ3 (C ∥ D) ∥ E

Subcase a ∈ fn(C);b ∈ D;a,b ∈ E

Γ1,a : S ;∆1 ⊢ϕ1 C
Γ2,b : T ;∆2 ⊢ϕ2 D Γ3;∆3,a : S,b : T ⊢ϕ3 E

Γ2, Γ3;∆2,∆3,a : S,b : T ♯ ⊢ϕ2+ϕ3 D ∥ E
Γ1, Γ2, Γ3;∆1,∆2,∆3,a : S ♯,b : T ♯ ⊢ϕ1+ϕ2+ϕ3 C ∥ (D ∥ E)

Here, we may not apply associativity directly. But, we may first commute D and E:

Γ1,a : S ;∆1 ⊢ϕ1 C
Γ3;∆3,a : S,b : T ⊢ϕ3 E Γ2,b : T ;∆2 ⊢ϕ2 D

Γ2, Γ3;∆2,∆3,a : S,b : T ♯ ⊢ϕ2+ϕ3 E ∥ D
Γ1, Γ2, Γ3;∆1,∆2,∆3,a : S ♯,b : T ♯ ⊢ϕ1+ϕ2+ϕ3 C ∥ (E ∥ D)

and from here we may safely re-associate to the left:

Γ2,a : S ;∆2 ⊢ϕ1 C Γ3;∆3,a : S,b : T ⊢ϕ3 E
Γ2, Γ3;∆2,∆3,a : S ♯,b : T ⊢ϕ1+ϕ2 D ∥ E Γ3,b : T ;∆3 ⊢ϕ3 D
Γ1, Γ2, Γ3;∆1,∆2,∆3,a : S ♯,b : T ♯ ⊢ϕ1+ϕ2+ϕ3 (C ∥ E) ∥ D

Case (C ∥ D) ∥ E

(1) Γ1,a : S ;∆1 ⊢ϕ1 C, and Γ2,b : T ;∆2,a : S ⊢ϕ2 D, and Γ3;∆3,b : T ⊢ϕ3 E
(2) Γ1,a : S,b : T ;∆1 ⊢ϕ1 C, and Γ2;∆2,b : T ⊢ϕ2 D, and Γ3;∆3,a : S ⊢ϕ3 E
Subcase a ∈ C;a,b ∈ D;b ∈ E
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Assumption:

Γ1,a : S ;∆1 ⊢ϕ1 C Γ2,b : T ;∆2,a : S ⊢ϕ2 D
Γ1, Γ2,b : T ;∆1,∆2,a : S ♯ ⊢ϕ1+ϕ2 C ∥ D Γ3;∆3,b : T ⊢ϕ3 E

Γ1, Γ2, Γ3;∆1,∆2,∆3,a : S ♯,b : T ♯ ⊢ϕ1+ϕ2+ϕ3 (C ∥ D) ∥ E
Applying associativity here does not make the configuration ill-typed, as D contains both names:

Γ1,a : S ;∆1 ⊢ϕ1 C
Γ2,b : T ;∆2,a : S ⊢ϕ2 D Γ3;∆3,b : T ⊢ϕ3 E

Γ2, Γ3;∆2,∆3,a : S,b : T ♯ ⊢ϕ2+ϕ3 D ∥ E
Γ1, Γ2, Γ3;∆1,∆2,∆3,a : S ♯,b : T ♯ ⊢ϕ1+ϕ2+ϕ3 C ∥ (D ∥ E)

Subcase a,b ∈ C;a ∈ D;b ∈ E
Assumption:

Γ1,a : S,b : T ;∆1 ⊢ϕ1 C Γ2;∆2,a : S ⊢ϕ2 D
Γ2, Γ3,b : T ;∆2,∆3,a : S ♯ ⊢ϕ2+ϕ3 C ∥ D Γ3;∆3,b : T ⊢ϕ3 E

Γ1, Γ2, Γ3;∆1,∆2,∆3,a : S ♯,b : T ♯ ⊢ϕ1+ϕ2+ϕ3 (C ∥ D) ∥ E
By commutativity:

Γ2;∆2,a : S ⊢ϕ2 D Γ1,a : S,b : T ;∆1 ⊢ϕ1 C
Γ2, Γ3,b : T ;∆2,∆3,a : S ♯ ⊢ϕ2+ϕ1 D ∥ C Γ3;∆3,b : T ⊢ϕ3 E

Γ1, Γ2, Γ3;∆1,∆2,∆3,a : S ♯,b : T ♯ ⊢ϕ1+ϕ2+ϕ3 (D ∥ C) ∥ E
By associativity:

Γ2;∆2,a : S ⊢ϕ2 D
Γ1,a : S,b : T ;∆1 ⊢ϕ1 C Γ3;∆3,b : T ⊢ϕ3 E

Γ1, Γ3,a : S ;∆1,∆3,b : T ♯ ⊢ϕ1+ϕ3 C ∥ E
Γ1, Γ2, Γ3;∆1,∆2,∆3,a : S ♯,b : T ♯ ⊢ϕ1+ϕ2+ϕ3 D ∥ (C ∥ E)

as required.

□

C.1.2 Configuration Reduction. We may now show that configuration reduction preserves

typeability of configurations. We begin by stating some auxiliary results about substitution and

evaluation contexts.

Typing of terms is preserved by substitution.

Lemma C.3 (Substitution). If:
(1) Γ1 ⊢ M : B
(2) Γ2,x : B ⊢ N : A
(3) Γ1, Γ2 is well-defined

then Γ1, Γ2 ⊢ N {M/x} : A.

Proof. By induction on the derivation of Γ2,x : B ⊢ N : A. □

Lemma C.4 shows that a subterm of a well-typed evaluation context E (and therefore also a pure

evaluation context P ) is typeable with a subset of the type environment. Lemma C.5 states that the

subterm of a well-typed evaluation context can be replaced. Both follow the formulation of Gay

and Vasconcelos [2010].
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Lemma C.4 (Typeability of subterms). If D is a derivation of Γ ⊢ E[M] : A, then there exist Γ1, Γ2
and B such that Γ = Γ1, Γ2, that D has a subderivation D′ that concludes Γ2 ⊢ M : B, and the position
of D′ in D corresponds to the position of the hole in E.

Proof. By induction on the structure of E. □

Lemma C.5 (Replacement (evaluation contexts)). If:
• D is a derivation of Γ1, Γ2 ⊢ E[M] : A
• D′ is a subderivation of D concluding Γ2 ⊢ M : B
• The position of D′ in D corresponds to that of the hole in E
• Γ3 ⊢ N : B
• Γ1, Γ3 is well-defined

then Γ1, Γ3 ⊢ E[N ] : A.

Proof. By induction on the structure of E. □

To prove preservation on configurations, we must first establish some auxiliary results on

configuration contexts. Lemma C.6 states how we may type subconfigurations.

Lemma C.6 (Typeability of subconfigurations). If D is a derivation of Γ;∆ ⊢ϕ G[C], then
there exist Γ′,∆′,ϕ ′ such that D has a subderivation D′ that concludes Γ′;∆′ ⊢ϕ′ C, and the position
of D′ in D corresponds to the position of the hole in G.

Proof. By induction on the structure of G. □

Lemma C.7 states that we may replace a subconfiguration of a configuration context. The lemma

is slightly complicated by the fact that (νa)G binds a variable a, but replacement is safe if the typing

environments are related by the environment reduction relation.

Lemma C.7 (Replacement (configurations)). If:

• D is a derivation of Γ;∆ ⊢ϕ G[C]
• D′ is a subderivation of D concluding that Γ′;∆′ ⊢ϕ′ C for some Γ′,∆′,ϕ ′

• Γ′′;∆′′ ⊢ϕ′ C′ for some Γ′′,∆′′ such that Γ′;∆′ −→? Γ′′;∆′′

• The position of D in D′ corresponds to that of the hole in G
then there exist some Γ′′′,∆′′′ such that Γ′′′;∆′′′ ⊢ϕ G[C′] and Γ;∆ −→? Γ′′′;∆′′′.

Proof. By induction on the structure of G. □

Theorem 3.2 (Preservation (Configurations)
Assume Γ only contains entries of the form ai : Si .
If Γ;∆ ⊢ϕ C and C −→ D, then there exist Γ′,∆′ such that Γ;∆ −→? Γ′;∆′ and Γ′;∆′ ⊢ϕ D.

Proof. By induction on the derivation of C −→ D. Where there is a choice of value for ϕ, we
consider the case where ϕ = •; the cases where ϕ = ◦ are similar.

Case E-Fork

Assumption:

Γ1, Γ2 ⊢ •E[fork λx .M] : A
Γ1, Γ2; · ⊢• •E[fork λx .M]
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By Lemma C.4:

Γ2,x : S ⊢ M : 1

Γ2 ⊢ λx .M : S ⊸ 1

Γ2 ⊢ fork λx .M : S

By Lemma C.3, Γ2,b : S ⊢ M{b/x} : 1, and by Lemma C.5, Γ1,a : S ⊢ E[a] : A. As duality is

involutive, S = S .
Reconstructing:

Γ1,a : S ⊢ E[a] : A
Γ1,a : S ; · ⊢• •E[a]

Γ2,b : S ⊢◦ ◦M{b/x}
S/ϵ = S/ϵ · ⊢ ϵ : ϵ · ⊢ ϵ : ϵ

·;a : S,b : S ⊢◦ a(ϵ)↭b(ϵ)
Γ2;a : S,b : S ♯ ⊢◦ M{b/x} ∥ a(ϵ)↭b(ϵ)

Γ1, Γ2;a : S
♯
,b : S ♯ ⊢• •E[a] ∥ ◦M{b/x} ∥ a(ϵ)↭b(ϵ)

Γ1, Γ2;a : S
♯ ⊢• (νb)(•E[a] ∥ ◦M{b/x} ∥ a(ϵ)↭b(ϵ))

Γ1, Γ2; · ⊢• (νa)(νb)(•E[a] ∥ ◦M{b/x} ∥ a(ϵ)↭b(ϵ))

Case E-Send

Assumption:

Γ1, Γ2 ⊢ E[sendU a] : C
Γ1, Γ2,a : S ; · ⊢• •E[sendU a]

S/−→A = T /−→B Γ3 ⊢
−→
V :

−→
A Γ4 ⊢

−→
W :

−→
B

Γ3, Γ4;a : S,b : T ⊢◦ a(−→V )↭b(−→W )

Γ1, Γ2, Γ3, Γ4;a : S ♯,b : T ⊢• •E[sendU a] ∥ a(−→V )↭b(−→W )
By Lemma C.4:

Γ2 ⊢ U : A a : !A.S ′ ⊢ a : !A.S ′

Γ2,a : !A.S ′ ⊢ sendU a : S ′

Thus, S = !A.S ′, and S = ?A.S ′. We may therefore refine our original derivation:

Γ1, Γ2,a : !A.S ′ ⊢ E[sendU a] : C
Γ1, Γ2,a : !A.S ′; · ⊢• •E[sendU a]

?A.S ′/−→A = T /−→B Γ3 ⊢
−→
V :

−→
A Γ4 ⊢

−→
W :

−→
B

Γ3, Γ4;a : ?A.S ′,b : T ⊢◦ a(−→V )↭b(−→W )

Γ1, Γ2, Γ3, Γ4;a : !A.S ′♯,b : T ⊢• •E[sendU a] ∥ a(−→V )↭b(−→W )

Since ?A.S ′/−→A = T /−→B is well-defined, we have that

−→
A = ϵ . By the definition of slicing, we have

that T = !B1. · · · .!Bn .!A.S ′, where
−→
B = B1, . . . ,Bn . It follows that S ′/

−→
A = T /−→B · A.

By Lemma C.5, we have Γ1, Γ2,a : S ′ ⊢ E[a] : C .
Reconstructing:

Γ1,a : S ′ ⊢ E[a] : C
Γ1,a : S ′; · ⊢• •E[a]

S ′/−→A = T /−→B · A Γ3 ⊢
−→
V :

−→
A Γ2, Γ4 ⊢

−→
W ·U :

−→
B · A

Γ2, Γ3, Γ4;a : S ′,b : T ⊢◦ a(−→V )↭b(−→W ·U )

Γ1, Γ2, Γ3, Γ4;a : S ′♯,b : T ⊢• •E[a] ∥ a(−→V )↭b(−→W ·U )
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Finally, we must show environment reduction:

!A.S ′ −→ S ′

Γ1, Γ2, Γ3, Γ4;a : (!A.S ′)♯,b : T −→ Γ1, Γ2, Γ3, Γ4;a : S ′♯,b : T

as required.

Case E-Receive

Assumption:

Γ1,a : S ⊢ E[receive a] : C
Γ1,a : S ; · ⊢• E[receive a]

S/−→A = T /−→B Γ2, Γ3 ⊢ U · −→V :

−→
A Γ4 ⊢

−→
W :

−→
B

Γ2, Γ3, Γ4;a : S,b : T ⊢◦ a(U · −→V )↭b(−→W )

Γ1, Γ2, Γ3, Γ4;a : S♯ ,b : T ⊢• •E[receive a] ∥ a(U · −→V )↭b(−→W )

By Theorem C.4:

a : ?A.S ′ ⊢ a : ?A.S ′

a : ?A.S ′ ⊢ receive a : (A × S ′)

Thus, we have that S = ?A.S ′ and S = !A.S ′, and we may therefore refine the original typing

derivation:

Γ1,a : ?A.S ′ ⊢ E[receive a] : C
Γ1,a : ?A.S ′; · ⊢• E[receive a]

!A.S ′/A ·
−→
A′ = T /−→B

Γ1 ⊢ U : A Γ3 ⊢
−→
V :

−→
A′

Γ2, Γ3 ⊢ U · −→V : A ·
−→
A′ Γ4 ⊢

−→
W :

−→
B

Γ2, Γ3, Γ4;a : !A.S ′,b : T ⊢◦ a(U · −→V )↭b(−→W )

Γ1, Γ2, Γ3, Γ4;a : (?A.S ′)♯ ,b : T ⊢• •E[receive a] ∥ a(U · −→V )↭b(−→W )

By Lemma C.5, we have Γ1, Γ2,a : S ′ ⊢ E[(U ,a)] : C (that Γ1, Γ2 is defined follows from the fact that

Γ1 and Γ2 are sub-environments of the original typing environment and are therefore necessarily

disjoint).

By the definition of slicing, !A.S ′/A · −→A′ ⇐⇒ S ′/−→A′
.

Thus, recomposing:

Γ1, Γ2,a : S ′ ⊢ E[(U ,a)] : C
Γ1, Γ2,a : S ′; · ⊢• E[(U ,a)]

S ′/
−→
A′ = T /−→B Γ3 ⊢

−→
V :

−→
A′ Γ4 ⊢

−→
W :

−→
B

Γ3, Γ4;a : S ′,b : T ⊢◦ a(−→V )↭b(−→W )

Γ1, Γ2, Γ3, Γ4;a : S ′♯,b : T ⊢• •E[(U ,a)] ∥ a(−→V )↭b(−→W )

Finally, we must show environment reduction:

?A.S ′ −→ S ′

Γ1, Γ2, Γ3, Γ4;a : (?A.S ′♯);b : T −→ Γ1, Γ2, Γ3, Γ4;a : S ′♯,b : T

as required.

Case E-Close
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Assumption:

Γ1,a : S ⊢ E[close a] : C
Γ1,a : S ; · ⊢• •E[close a]

Γ2,b : T ⊢ E ′[close b] : 1
Γ2,b : T ; · ⊢◦ ◦E ′[close b]

S/ϵ = T /ϵ · ⊢ ϵ : ϵ · ⊢ ϵ : ϵ

·;a : S,b : T ⊢◦ a(ϵ)↭b(ϵ)

Γ2;a : S,b : T ♯ ⊢◦ E ′[close b] ∥ a(ϵ)↭b(ϵ)

Γ1, Γ2;a : S♯ ,b : T ♯ ⊢• •E[close a] ∥ ◦E ′[close b] ∥ a(ϵ)↭b(ϵ)

Γ1, Γ2;a : S♯ ⊢• (νb)(•E[close a] ∥ ◦E ′[close b] ∥ a(ϵ)↭b(ϵ))
Γ1, Γ2; · ⊢• (νa)(νb)(•E[close a] ∥ ◦E ′[close b] ∥ a(ϵ)↭b(ϵ))

By Lemma C.4:

a : End ⊢ a : End

a : End ⊢ close a : 1

b : End ⊢ b : End

b : End ⊢ close b : 1

By Lemma C.5, we have that Γ1 ⊢ E[()] : C and that Γ2 ⊢ E ′[()] : 1. Thus by T-Mix, we may show:

Γ1 ⊢ E[()] : C
Γ1; · ⊢• •E[()]

Γ2 ⊢ E[()] : 1
Γ2; · ⊢◦ ◦E[()]

Γ1, Γ2; · ⊢• •E[()] ∥ ◦E[()]

as required.

Case E-Cancel

F[cancel a] −→ F[()] ∥  a
Assumption:

Γ ⊢ E[cancel a] : C
Γ; · ⊢• •E[cancel a]

By Lemma C.4, Γ = Γ1, Γ2, where

Γ2 ⊢ a : S

Γ2 ⊢ cancel a : 1

Thus Γ2 = a : S . By Lemma C.5, Γ1 ⊢ E[()] : C . By T-Zap, we have that a : S ⊢◦  a. Thus,
recomposing:

Γ ⊢ E[()] : C
Γ1; · ⊢• •E[()] a : S ; · ⊢◦  a

Γ1,a : S ; · ⊢• •E[()] ∥  a

as required.

Case E-Zap

 a ∥ a(U · −→V )↭b(−→W ) −→  a ∥  c1 ∥ · · · ∥  cn ∥ a(−→V )↭b(−→W )
where fn(U ) = {ci }i .
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Assumption:

a : S ; · ⊢◦  a
S/−→A = T /−→B Γ1, Γ2 ⊢ U · −→V :

−→
A Γ3 ⊢

−→
W :

−→
B

Γ1, Γ2, Γ3;a : S,b : T ⊢◦ a(U · −→V )↭b(−→W )

Γ1, Γ2, Γ3;a : S ♯,b : T ⊢◦  a ∥ a(U · −→V )↭b(−→W )

By the definition of slicing, we have that there exist some A and S ′ such that S = !A.S ′. Thus, we
may refine our judgement:

a : ?A.S ′; · ⊢◦  a
!A.S ′/A ·

−→
A′ = T /−→B Γ1, Γ2 ⊢ U · −→V : A ·

−→
A′ Γ3 ⊢

−→
W :

−→
B

Γ1, Γ2, Γ3;a : S,b : T ⊢◦ a(U · −→V )↭b(−→W )

Γ1, Γ2, Γ3;a : S ♯,b : T ⊢◦  a ∥ a(U · −→V )↭b(−→W )

By the definition of buffer typing, we have that Γ1 ⊢ U : A. By the definition of the reduction

rule, fn(U ) = {ci }i , and by assumption, Γ contains only runtime names. Thus, we may conclude

thatU is closed and therefore that Γ1 = c1 : S1, . . . cn : Sn for some session types S1, . . . Sn .

By the definition of slicing, we have that !A.S ′/A ·−→A′ ⇐⇒ S ′/−→A′
. Correspondingly, by T-Buffer,

we may show

S ′/
−→
A′ = T /−→B Γ2 ⊢

−→
V :

−→
A′ Γ3 ⊢

−→
W :

−→
B

Γ2, Γ3;a : S ′,b : T ⊢◦ a(−→V )↭b(−→W )

By repeated applications of T-Zap and T-Mix, we have that

Γ2, Γ3, c1 : S1, . . . , cn : Sn ;a : S ′,b : T ⊢◦  c1 ∥ · · · ∥  cn ∥ a(−→V )↭b(−→W )
Recomposing:

a : S ′; · ⊢◦  a

c1 : S1; · ⊢◦  c1

cn : Sn ; · ⊢◦  cn

S ′/
−→
A′ = T /−→B Γ2 ⊢

−→
V :

−→
A′ Γ3 ⊢

−→
W :

−→
B

Γ2, Γ3;a : S ′, b : T ⊢◦ a(−→V )↭b(−→W )
.
.
.

Γ2, Γ3, c1 : S1, . . . , cn : Sn ;a : S ′, b : T ⊢◦  c1 ∥ . . . ∥  cn ∥ a(−→V )↭b(−→W )

Γ2, Γ3, c1 : S1, . . . , cn : Sn ;a : S ′♯, b : T ⊢◦  a ∥  c1 ∥ . . . ∥  cn ∥ a(−→V )↭b(−→W )

Finally, we must show environment reduction:

?A.S ′ −→ S ′

Γ2, Γ3, c1 : S1, . . . , cn : Sn ;a : (?A.S ′♯),b : T −→ Γ2, Γ3, c1 : S1, . . . , cn : Sn ;a : S ′♯,b : T

as required.

Case E-CloseZap

F[close a] ∥  b ∥ a(ϵ)↭b(ϵ) −→ F[raise] ∥  a ∥  b ∥ a(ϵ)↭b(ϵ)
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Assumption:

Γ,a : S ⊢ E[close a] : C
Γ,a : S ; · ⊢• •E[close a]

b : T ; · ⊢◦  b
S = T · ⊢ ϵ : ϵ · ⊢ ϵ : ϵ

·;a : S,b : T ⊢◦ a(ϵ)↭b(ϵ)
·;a : S,b : T ♯ ⊢◦  b ∥ a(ϵ)↭b(ϵ)

Γ;a : S ♯,b : T ♯ ⊢• •E[close a] ∥  b ∥ a(ϵ)↭b(ϵ)

By Lemma C.4:

a : End ⊢ a : End

a : S ⊢ close a : 1

We may therefore refine our original derivation:

Γ,a : End ⊢ E[close a] : C
Γ,a : End; · ⊢• •E[close a]

b : End; · ⊢◦  b
End = End · ⊢ ϵ : ϵ · ⊢ ϵ : ϵ

·;a : End,b : End ⊢◦ a(ϵ)↭b(ϵ)
·;a : End,b : End♯ ⊢◦  b ∥ a(ϵ)↭b(ϵ)

Γ;a : End♯,b : End♯ ⊢• •E[close a] ∥  b ∥ a(ϵ)↭b(ϵ)

By Lemma C.5, Γ ⊢ E[raise] : C .
Thus, recomposing:

Γ ⊢ E[raise] : C
Γ ⊢• •E[raise]

a : End; · ⊢◦  a

b : End; · ⊢◦  b
End = End · ⊢ ϵ : ϵ · ⊢ ϵ : ϵ

·;a : End,b : End ⊢◦ a(ϵ)↭b(ϵ)

·;a : End,b : End♯ ⊢◦  b ∥ a(ϵ)↭b(ϵ)

·;a : End♯ ,b : End♯ ⊢◦  a ∥  b ∥ a(ϵ)↭b(ϵ)

Γ;a : End♯ ,b : End♯ ⊢• •E[close a] ∥  b ∥ a(ϵ)↭b(ϵ)

as required.

Case E-ReceiveZap

•E[receive a] ∥  b ∥ a(ϵ)↭b(−→W ) −→ •E[raise] ∥  a ∥  b ∥ a(ϵ)↭b(−→W )
Assumption:

Γ1,a : S ⊢ E[receive a] : C
Γ1,a : S ; · ⊢• •E[receive a]

b : T ; · ⊢◦  b

S/ϵ = T /−→B · ⊢ ϵ : ϵ Γ2 ⊢
−→
W :

−→
B

Γ2;a : S,b : T ⊢◦ a(ϵ)↭b(−→W )

Γ2;a : S,b : T ♯ ⊢◦  b ∥ a(ϵ)↭b(−→W )

Γ1, Γ2;a : S ♯,b : T ♯ ⊢• •E[receive a] ∥  b ∥ a(ϵ)↭b(−→W )

By Lemma C.4:

a : ?A.S ′ ⊢ a : ?A.S ′

a : ?A.S ′ ⊢ receive a : (A × S ′)
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By Lemma C.5, Γ1 ⊢ E[raise] : S ′. Thus, recomposing:

Γ1 ⊢ E[raise] : C
Γ1; · ⊢• •E[raise]

a : S ; · ⊢  a

b : T ; · ⊢◦  b

S/ϵ = T /−→B · ⊢ ϵ : ϵ Γ2 ⊢
−→
W :

−→
B

Γ2;a : S,b : T ⊢◦ a(ϵ)↭b(−→W )

Γ2;a : S,b : T ♯ ⊢◦  b ∥ a(ϵ)↭b(−→W )

Γ2;a : S♯ ,b : T ♯ ⊢◦  a ∥  b ∥ a(ϵ)↭b(−→W )

Γ1, Γ2;a : S♯ ,b : T ♯ ⊢• •E[raise] ∥  a ∥  b ∥ a(ϵ)↭b(−→W )

as required.

Case E-Raise

•E[try P[raise] as x inM otherwise N ] −→ E[N ] ∥  c1 ∥ · · · ∥  cn
and fn(P) = {ci }i .
Assumption:

Γ ⊢ E[try P[raise] as x inM otherwise N ] : A′

Γ; · ⊢• •E[try P[raise] as x inM otherwise N ]

By Lemma C.4, there exist Γ1, Γ2,A,B,C such that Γ = Γ1, Γ2, Γ3 and

Γ2 ⊢ P[raise] : A Γ3,x : B ⊢ M : C Γ3 ⊢ N : C

Γ2, Γ3 ⊢ try P[raise] as x inM otherwise N : C

Since Γ contains only runtime names and fn(P) = {ci }i , we know that Γ2 = c1 : S1, . . . , cn : Sn for

some Si .
By Lemma C.5, we have that:

Γ1, Γ3 ⊢ E[N ] : A′

By repeated applications of T-Zap and T-Mix, we have that Γ2 ⊢  c1 ∥ · · · ∥  cn .
Therefore, recomposing:

Γ1, Γ3 ⊢ E[N ] : C
Γ1, Γ3; · ⊢• •E[N ]

c1 : S1; · ⊢◦  c1

cn−1 : Sn−1; · ⊢◦  cn−1 cn : Sn ; · ⊢◦  cn
...

c1 : S1, . . . , cn : Sn ; · ⊢◦  c1 ∥ · · · ∥  cn
Γ1, Γ3, c1 : S1, . . . , cn : Sn ; · ⊢• •E[N ] ∥  c1 ∥ · · · ∥  cn

as required.

Case E-RaiseChild

◦P[raise] −→  c1 ∥ · · · ∥  cn
Assumption:

Γ ⊢ P[raise] : 1
Γ; · ⊢◦ ◦P[raise]

Proc. ACM Program. Lang., Vol. POPL, No. 1, Article 1. Publication date: November 2019.



2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

Exceptional Asynchronous Session Types 1:45

By Lemma C.4, the knowledge that Γ contains only runtime names, the knowledge that fn(P) =
c1, . . . , cn , and the typing rule T-Raise, we have that Γ = c1 : S1, . . . , cn : Sn for some session types

{Si }i .
Thus, by repeated applications of T-Zap and T-Mix, we may deduce that

Γ; · ⊢◦  c1 ∥ · · · ∥  cn
as required.

Case E-RaiseMain

•P[raise] −→ halt ∥  c1 ∥ · · · ∥  cn
where fn(P) = {ci }i .

Assumption:

Γ ⊢ P[raise] : C
Γ; · ⊢• •P[raise]

By Lemma C.4, the knowledge that Γ contains only runtime names, the knowledge that fn(P) =
c1, . . . , cn , and the typing rule T-Raise, we have that Γ = c1 : S1, . . . , cn : Sn for some session types

{Si }i .
By repeated applications of T-Zap and T-Mix, we may deduce that

Γ; · ⊢◦  c1 ∥ · · · ∥  cn
By T-Halt, we have that ·; · ⊢• halt. Thus, recomposing, we arrive at

·; · ⊢• halt

c1 : S1; · ⊢◦  c1

cn−1 : Sn−1; · ⊢◦  cn−1 cn : Sn ; · ⊢◦  cn
...

c1 : S1, . . . , cn : Sn ; · ⊢◦  c1 ∥ · · · ∥  cn
Γ1, Γ3, c1 : S1, . . . , cn : Sn ; · ⊢• halt ∥  c1 ∥ · · · ∥  cn

as required.

Case LiftC

Assumptions:

• Γ;∆ ⊢ϕ G[C]
• C −→ D

Let D be a derivation of Γ;∆ ⊢ϕ G[C]. By Lemma C.6, we have that there exists some D′
such

that D′
is a subderivation of D concluding Γ′;∆′ ⊢ϕ′ C, where the position of D′

in D corresponds

to that of the hole in G.

By the IH, we have that there exists some Γ′′;∆′′
such that Γ;∆ −→? Γ′′;∆′′

and Γ′′;∆′′ ⊢ϕ D.

By LemmaC.7, we have that there exist some Γ′′′;∆′′′
such that Γ;∆ −→? Γ′′′;∆′′′

and Γ′′′;∆′′′ ⊢ϕ
G[D], as required.

Case E-LiftM

Assumptions:

Γ ⊢ M : A

Γ; · ⊢• •M
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andM −→M N . By Lemma 3.1, we have that Γ ⊢ N : A. Recomposing:

Γ ⊢ N : A

Γ; · ⊢• •N
as required. □

C.2 Canonical Forms

Theorem 3.7: Canonical Forms Given C such that Γ;∆ ⊢• C, there exists some C′ ≡ C such that
Γ;∆ ⊢• C′ and C′ is in canonical form.

Proof. The proof is by induction on the count of ν-bound variables, following Lindley and

Morris [2015]. Without loss of generality, assume that the ν-bound variables of C are distinct. Let

{ai | 1 ≤ i ≤ n} be the set of ν -bound variables in C and let {Dj | 1 ≤ j ≤ m} be the set of threads
in C.

In the case that n = 0, by Lemma C.1 we can safely commute the main thread such that it is the

rightmost configuration, and associate parallel composition to the right using Lemma C.2 to derive

a well-typed canonical form.

In the case that n ≥ 1, pick some ai and Dj such that ai is the only ν-bound variable in fn(Dj );
Lemma 3.6 and a standard counting argument ensure that such a name and configuration exist.

By the equivalence rules, there exists E such that Γ;∆ ⊢ϕ C ≡ (νai )(Dj ∥ E) (that ai is the only
ν -bound variable in fn(Dj ) ensures well-typing). Moreover, we have that there exist Γ′ ⊆ Γ, ∆′ ⊆ ∆,

and S , such that either Γ′,ai : S ;∆′ ⊢ϕ E or Γ′;∆′,ai : S ⊢ϕ E. By the induction hypothesis, there

exists E ′
in canonical form such that either Γ′,ai : S ;∆′ ⊢ϕ E ≡ E ′

or Γ′;∆′,ai : S ⊢ϕ E ≡ E ′
.

Let C′ = (νai )(Dj ∥ E ′). By construction it holds that Γ;∆ ⊢ϕ C ≡ C′
and that C′

is in canonical

form. □

C.3 Progress
To prove Theorem 3.9, we prove a similar property in which canonical configurations are decom-

posed step-by-step rather than in one go.

Definition C.8 (Open Progress). Suppose Ψ;∆ ⊢• C, where C is in canonical form and C Y=⇒.

We say that C satisfies open progress if:
(1) C = (νa)(A ∥ D), where Ψ = Ψ1,Ψ2 and ∆ = ∆1,∆2 such that either:

(a) Ψ1,a : S ;∆1 ⊢◦ A and Ψ2;∆2,a : S ⊢• D whereD satisfies open progress, andA is either:

(i) A thread ◦M where ready(b,M) for some b ∈ fn(Ψ1,a : S); or
(ii) A zapper thread  a; or
(iii) A buffer b(−→V )↭c(−→W ) where b, c , a and either a ∈ −→

V or a ∈ −→
W

(b) Ψ1;∆1,a : S ⊢◦ A and Ψ2,a : S ;∆2 ⊢• D, where D satisfies open progress, and A is

either a(−→V )↭b(−→W ) or b(−→V )↭a(−→W ) for some b ∈ fn(∆1)
(2) C = A ∥ M, where Ψ = Ψ1,Ψ2 and either:

(a) ∆ = ∆1,∆2,a : S ♯ , where Ψ1,a : S ;∆1 ⊢◦ A and Ψ2;∆2,a : S ⊢• M, where M satisfies

open progress, and A is either:

(i) A thread ◦M where ready(b,M) for some b ∈ fn(Ψ1,a : S); or
(ii) A zapper thread  a; or
(iii) A buffer b(−→V )↭c(−→W ) where b, c , a and either a ∈ fn(−→V ) or a ∈ fn(−→W )

(b) ∆ = ∆1,∆2,a : S ♯ , where Ψ1;∆1,a : S ⊢◦ A and Ψ2,a : S ;∆2 ⊢• M, where M satisfies

open progress, and A is either a(−→V )↭b(−→W ) or b(−→V )↭a(−→W ) for some b ∈ fn(∆1)
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(c) ∆ = ∆1,∆2, where Ψ1;∆1 ⊢◦ A and Ψ2;∆2 ⊢• M, whereM satisfies open progress, and

A is either:

(i) A thread ◦M where eitherM = (), or ready(a,M) for some a ∈ fn(Ψ1); or
(ii) A zapper thread  a for some a ∈ fn(Ψ1); or
(iii) A buffer a(−→V )↭b(−→W ) for some a,b ∈ fn(∆1)

(3) C = T, where either:
(a) T = •N , where N is either a value or ready(b,N ) for some b ∈ fn(Ψ)
(b) T = halt

Lemma C.9. Suppose Ψ;∆ ⊢• C, where C is in canonical form and C Y=⇒. Then C satisfies open
progress.

Proof. By induction on the derivation of Ψ;∆ ⊢• C. We have three cases, based on the structure

of the given canonical form.

Case C = (νa)(A ∥ D), with a ∈ fn(A), and where D is in canonical form

By assumption, we know that Ψ;∆ ⊢ϕ (νa)(A ∥ D).
This configuration is typeable by T-Nu, followed by either T-Connect1 or T-Connect2. As

the definition of canonical forms requires that a ∈ fn(A), it cannot be the case that the parallel
composition arises as a result of T-Mix.

We consider these two subcases to show thatA satisfies the properties required by open progress.

Subcase T-Connect1

Ψ1,a : S ;∆1 ⊢ϕ1 A Ψ2;∆2,a : S ⊢ϕ2 D
Ψ1,Ψ2;∆1,∆2,a : S ♯ ⊢ϕ1+ϕ2 A ∥ D
Ψ1,Ψ2;∆1,∆2 ⊢ϕ1+ϕ2 (νa)(A ∥ D)

By the definition of auxiliary threads and inversion on the typing relation, we know that A is of

the following forms:

• ◦M , where a ∈ fn(M), and Ψ1,a : S ⊢ M : 1
•  a
• b(−→V )↭c(−→W ), where b, c ∈ fn(∆1) and a ∈ fn(V )
• b(−→V )↭c(−→W ), where b, c ∈ fn(∆1) and a ∈ fn(W )
(since a < ∆1, it cannot be the case that a appears as a buffer endpoint).

Lemma 3.4 tells us that either there exists someM ′
such thatM −→M M ′

; thatM is a value; or

thatM is a communication and concurrency construct. Since C Y=⇒, we have thatM is unable to

reduce (as otherwise C could reduce by E-LiftM). Since a ∈ fn(M) and a does not have type 1, it
cannot be the case thatM is a value.

Therefore, we have that M has the form E[N ], where N is a communication / concurrency

construct. This cannot be fork, since fork may always reduce by E-Fork, so there must exist

some b ∈ fn(Ψ,a : S) such that ready(b,M).
Subcase T-Connect2

Ψ1;∆1,a : S ⊢◦ A Ψ2,a : S ;∆2 ⊢• D
Ψ1,Ψ2;∆1,∆2,a : S ♯ ⊢• A ∥ D
Ψ1,Ψ2;∆1,∆2 ⊢• (νa)(A ∥ D)
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By the definition of auxiliary threads and inversion on the typing relation, we know that A is of

the following forms:

• a(−→V )↭b(−→W ), where b ∈ ∆1

• b(−→V )↭a(−→W ), where b ∈ ∆1

(as a ∈ fn(A) and a ∈ ∆1, it cannot be the case that A is a child thread or a zapper thread, as

these require empty runtime typing environments).

By the induction hypothesis, we know that D satisfies open progress; hence (νa)(A ∥ D) satisfies
open progress.

Case C = A ∥ M

There are three subcases, based onwhether the parallel composition arises as a result of T-Connect1,

T-Connect2, or T-Mix.

Subcase T-Connect1

Ψ1,a : S ;∆1 ⊢◦ A Ψ2;∆2,a : S ⊢• M
Ψ1,Ψ2;∆1,∆2,a : S ♯ ⊢• A ∥ M

By inversion on the typing rules, we have that A may be:

• A child thread ◦M , where a ∈ fn(M)
• A zapper thread  a
• A buffer b(−→V )↭c(−→W ), where b, c , a and either a ∈ fn(−→V ) or a ∈ fn(−→W )
In the case of (1), by Lemma 3.4, we have that either M is a value; there exists N such that

M −→M N ; orM = E[N ] for some E,N , where N is a communication / concurrency construct.

By T-Child, Ψ1,a : S ⊢ M : 1. Since a ∈ fn(M) and the only value with type 1 is the unit

value () it therefore cannot be the case thatM is a value. Since C Y=⇒, it cannot be the case that

M −→M N , since otherwise C could reduce. Thus, it must be the case thatM = E[N ] where N is

a communication and concurrency construct; by similar reasoning as above cases, it therefore

must be the case that ready(b,M) for some b ∈ fn(Ψ1,a : S).
(2) and (3) satisfy the required conditions by definition.

Subcase T-Connect2

Ψ1;∆1,a : S ⊢◦ A;Ψ2,a : S ;∆2 ⊢• M
Ψ1,Ψ2;∆1,∆2,a : S ♯ ⊢• A ∥ M

Since the runtime typing environment ∆1,a : S is non-empty, it cannot be the case that A is a

child thread or zapper thread. Thus, A must either be of the form:

(1) a(−→V )↭b(−→W ), where a,b ∈ ∆1; or

(2) b(−→V )↭a(−→W ), where a,b ∈ ∆1

which satisfy the required conditions by definition.

Subcase T-Mix

Ψ1;∆1 ⊢◦ A Ψ2;∆2 ⊢• M
Ψ1,Ψ2;∆1,∆2 ⊢• A ∥ M

By inversion on the typing rules, we have that A may either be:

(1) A child thread ◦M
(2) A zapper thread  a for some a ∈ fn(Ψ1)
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(3) A buffer thread a(−→V )↭b(−→W ) for some a,b ∈ fn(∆1)
By Lemma 3.4, we have thatM is either a value V ; there exists some N such thatM −→M N ;

orM = E[N ] for some E,N such that N is a communication and concurrency primitive. It cannot

be the case thatM −→M N since otherwise the configuration could reduce.

By T-Child, it must be the case that Ψ1;∆1 ⊢ M : 1; if M is a value then by inversion on the

term typing rules, it must be the case thatM = ().
Following the same reasoning as previous cases, if M = E[N ] for some communication /

concurrency primitive N , it must be that ready(a,M) for some a ∈ Ψ1.

By the induction hypothesis, we know thatM satisfies open progress; hence A ∥ M satisfies open

progress.

Case C = T

Assumption: Ψ;∆ ⊢• T. By the definition of T, we have two subcases:

Subcase T = •M

Ψ ⊢ M : A

Ψ; · ⊢• •M
By Lemma 3.4, we have that eitherM is a value; that there exists some N such thatM −→M N ;

or that there exist some E,N such that M = E[N ] where N is a communication / concurrency

primitive.

Again, as C Y=⇒, it cannot be the case thatM −→M N , since otherwise C could reduce. IfM is

a value, then T satisfies open progress.

Finally, ifM = E[N ]where N is a communication / concurrency primitive, it cannot be the case

that N = forkM ′
since it could reduce by T-Fork, and so it must be the case that ready(a,M) for

some a ∈ Ψ, satisfying open progress, as required.

Subcase T = halt
Immediate by the definition of open progress.

□

Theorem 3.9 provides a more global and concise view of the properties exhibited by a non-

reducing process in canonical form, and arises as an immediate corollary.

Theorem 3.9 Suppose Ψ;∆ ⊢• C where C is in canonical form and C Y=⇒.
Let C = (νa1)(A1 ∥ (νa2)(A2 ∥ · · · ∥ (νan)(An ∥ M)) . . .)).
Either there exists some C′ such that C =⇒ C′, or:
(1) For 1 ≤ i ≤ n, each thread in Ai is either:

(a) a child thread ◦M for which there exists a ∈ {aj | 1 ≤ j ≤ i} ∪ fn(Ψ) such that ready(a,M);
(b) a zapper thread  ai ; or
(c) a buffer.

(2) M = A ′
1
∥ · · · ∥ A ′

m ∥ T such that for 1 ≤ j ≤ m:
(a) A ′

j is either:
(i) a child thread ◦N such that N = () or ready(a,N ) for some a ∈ {ai | 1 ≤ i ≤ n}∪ fn(Ψ)∪
fn(∆);

(ii) a zapper thread  a for some a ∈ {ai | 1 ≤ i ≤ n} ∪ fn(Ψ) ∪ fn(∆); or
(iii) a buffer.

(b) Either T = •N , where N is either a value or ready(a,N ) for some a ∈ {ai | 1 ≤ i ≤
n} ∪ fn(Ψ) ∪ fn(∆); or T = halt.
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C.4 Confluence

Theorem 3.12 (Diamond Property) If Ψ;∆ ⊢ϕ C, and C =⇒ D1, and C =⇒ D2, then either
D1 ≡ D2, or there exists some D3 such that D2 =⇒ D3 and D2 =⇒ D3.

Proof. As noted in Section 3.4, −→M is deterministic and hence confluent due to the setup

of term evaluation contexts, and linearity ensures that endpoints to a buffer may not be shared.

Consequently, communication actions on different channels may be performed in any order.

Nevertheless, two critical pairs arise due to asynchrony. The first arises when it is possible to

send to or receive from a buffer; there is a choice of whether the send or the receive happens first.

Both cases reduce to the same configuration after a single further step.

F[sendU a] ∥ a(−→V )↭b(V · −→W ) ∥ F′[receive b]

F[a] ∥ a(−→V )↭b(V · −→W ·U ) ∥ F′[receive b] F[sendU a] ∥ a(−→V )↭b(−→W ) ∥ F′[(V ,b)]

F[a] ∥ a(−→V )↭b(−→W ·U ) ∥ F′[(V ,b)]
The second critical pair arises when sending to a buffer where the peer endpoint has a non-empty

buffer and has been cancelled. There is a choice as to whether the value at the head of the queue is

cancelled before or after the send takes place. Again, both cases reduce to the same configuration

after a single further step.

F[sendU a] ∥  b ∥ a(−→V )↭b(V · −→W )

F[a] ∥  b ∥ a(−→V )↭b(V · −→W ·U ) F[sendU a] ∥  b ∥  V ∥ a(−→V )↭b(−→W )

F[a] ∥  b ∥  V ∥ a(−→V )↭b(−→W ·U )
□

Proc. ACM Program. Lang., Vol. POPL, No. 1, Article 1. Publication date: November 2019.



2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

Exceptional Asynchronous Session Types 1:51

D SUPPLEMENT TO SECTION 4.1 (METATHEORY OF EGVWITH ACCESS POINTS)
In this section, we prove that the extension of EGV with access points satisfies preservation.

Lemma D.1 (Preservation, Access Points (Eqivalence)). If Γ;∆ ⊢ϕ C and C ≡ D, then
Γ;∆ ⊢ϕ D

Proof. By induction on the derivation of C ≡ D. Rule T-ConnectN subsumes T-Connect1

and T-Connect2, so the majority of cases are similar to those we have proven in Lemma C.1. We

consider the case for associativity in detail.

Case C ∥ (D ∥ E) ≡ (C ∥ D) ∥ E

Γ = Γ1 + Γ′

Γ1,
−−−→
a : S ;∆1,

−−−→
b : T ⊢ϕ1 C

Γ′ = Γ2 + Γ3

Γ2, b1 : T1, . . . , bm′ : Tm′,
−−−−→
c : S ′;∆2, a1 : S1, . . . , am : Sm,

−−−−→
d : T ′ ⊢ϕ2 D

Γ3, bm′+1, . . . , bn′ : Tn′,
−−−−→
d : T ′

;∆3, am+1 : Sm+1, . . . , an : Sn,
−−−−→
c : S ′ ⊢ϕ3 E

Γ′,
−−−→
b : T ;∆2, ∆3,

−−−→
a : S,

−−−−−→
c : S ′♯,

−−−−−→
d : T ′♯ ⊢ϕ2+ϕ3 D ∥ E

Γ;∆1, ∆2, ∆3,
−−−−→
a : S ♯,

−−−−−→
b : T ♯,

−−−−−→
c : S ′♯,

−−−−−→
d : T ′♯ ⊢ϕ1+ϕ2+ϕ3 C ∥ (D ∥ E)

where −−−→
a : S = a1 : S1, . . . ,am : Sm , . . . ,an : Sn−−−→
b : T = b1 : T1, . . . ,bm′ : Tm′, . . . ,bn′ : Tn′

⇐⇒

Γ = Γ′′ + Γ3

Γ′′ = Γ1 + Γ2

Γ1,
−−−→
a : S ;∆1,

−−−→
b : T ⊢ϕ1 C

Γ2, b1 : T1, . . . , bm : Tm,
−−−−→
c : S ′;∆2,

−−−−→
d : T ′ ⊢ϕ2 D

Γ′′, am+1 : Sm+1, . . . , an : Sn
∆1, ∆2, a1 : S

♯
1
, . . . , am : S ♯

m,

b1 : T
♯
1
, . . . , bm′ : T ♯

m′ ;

bm′+1 : Tm′+1, . . . bn′ : Tn′, ⊢ϕ1+ϕ2 C ∥ D
Γ3, bm′+1, . . . , bn : Tn,

−−−−→
d : T ′

;

∆3, am+1 : Sm+1, . . . , an : Sn,
−−−−→
c : S ′ ⊢ϕ3 E

Γ;∆1, ∆2, ∆3,
−−−−→
a : S ♯,

−−−−−→
b : T ♯,

−−−−−→
c : S ′♯,

−−−−−→
d : T ′♯ ⊢ϕ1+ϕ2+ϕ3 C ∥ (D ∥ E)

□

The lemmas for subterm typeability and replacement are slightly different as we must consider

unrestricted environments.

Lemma D.2 (Typeability of subterms (Access Points)). IfD is a derivation of Γ ⊢ E[M] : A, then
there exist Γ1, Γ2 and B such that Γ = Γ1 + Γ2, that D has a subderivation D′ that concludes Γ2 ⊢ M : B,
and the position of D′ in D corresponds to the position of the hole in E.

Proof. By induction on the structure of E. □

Lemma D.3 (Replacement (Access Points)). If:
• D is a derivation of Γ ⊢ E[M] : A, such that Γ = Γ1 + Γ2
• D′ is a subderivation of D concluding Γ2 ⊢ M : B
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• The position of D′ in D corresponds to that of the hole in E
• Γ3 ⊢ N : B
• Γ′ = Γ1 + Γ3 is defined

then Γ′ ⊢ E[N ] : A.

Proof. By induction on the structure of E. □

Theorem D.4 (Preservation, Access Points). If Γ;∆ ⊢ϕ C and C =⇒ D, then Γ;∆ ⊢ϕ D.

Proof. Recall that =⇒ is defined as ≡−→≡. Therefore, the result arises by induction on the

derivation of C −→ D and as a corollary of Lemma D.1.

Again, since T-ConnectN subsumes T-Connect1 and T-Connect2, it suffices only to prove the

new cases required for access point reduction.

Case E-Spawn

Assumption:

Γ ⊢ E[spawnM] : C
Γ; · ⊢• •E[spawnM]

By Lemma D.2, we have that Γ = Γ1 + Γ2, and

Γ2 ⊢ M : 1

Γ2 ⊢ spawnM : 1

By Lemma D.3, we have that Γ1 ⊢ E[()] : C .
Recomposing:

Γ = Γ1 + Γ2 Γ1; · ⊢• E[()] Γ2; · ⊢◦ ◦M
Γ; · ⊢• E[()] ∥ ◦M

as required.

Case E-New

Assumption:

Γ ⊢ E[newS ] : C
Γ; · ⊢• •E[newS ]

By Lemma D.2 and TA-New, we have that · ⊢ newS : AP(S).
By Lemma D.3, we have that Γ, z : AP(S) ⊢ E[z] : C .
Thus, we can show:

Γ, z : AP(S) ⊢ E[z] : C
Γ, z : AP(S); · ⊢• •E[z] ·; z : AP(S) ⊢◦ z(ϵ, ϵ)

Γ, z : AP(S); z : S ⊢• •E[z] ∥ z(ϵ, ϵ)
Γ; · ⊢• (νz)(•E[z] ∥ z(ϵ, ϵ))

as required.

Case E-Accept

Proc. ACM Program. Lang., Vol. POPL, No. 1, Article 1. Publication date: November 2019.
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Assumption:

Γ ⊢ E[accept z] : C
Γ; · ⊢• •E[accept z] ·; z : S,X : S,Y : S ⊢◦ z(X,Y)

Γ; z : S,X : S,Y : S ⊢• •E[accept z] ∥ z(X,Y)
By Lemma D.2, we have that Γ = Γ1 + Γ2 and that Γ2 ⊢ accept z : S . Thus by TA-Accept we have

that z : AP(S) ∈ Γ.
By Lemma D.3, we have that Γ,a : S ⊢ E[a] : C .
Recomposing, we have that:

Γ,a : S ⊢ E[a] : C
Γ,a : S ; · ⊢• •E[a] ·; z : S,X : S,a : S,Y : S ⊢◦ z({a} ∪ X,Y)

Γ; z : S,X : S,Y : S,a : S ♯ ⊢• •E[a] ∥ z({a} ∪ X,Y)
Γ; z : S,X : S,Y : S ⊢• (νa)(•E[a] ∥ z({a} ∪ X,Y))

Case E-Request

Assumption:

Γ ⊢ E[request z] : C
Γ; · ⊢• •E[request z] ·; z : S,X : S,Y : S ⊢◦ z(X,Y)

Γ; z : S,X : S,Y : S ⊢• •E[accept z] ∥ z(X,Y)

By Lemma D.2, we have that Γ = Γ1 + Γ2 and that Γ2 ⊢ request z : S . Thus by TA-Reqest we

have that z : AP(S) ∈ Γ.

By Lemma D.3, we have that Γ,a : S ⊢ E[a] : C . As duality is involutive, we have that S = S .
Recomposing, we have that:

Γ,a : S ⊢ E[a] : C
Γ,a : S ; · ⊢• •E[a] ·; z : S,X : S,Y : S,a : S ⊢◦ z(X, {a} ∪ Y)

Γ; z : S,X : S,Y : S,a : S
♯ ⊢• •E[a] ∥ z(X, {a} ∪ Y)

Γ; z : S,X : S,Y : S ⊢• (νa)(•E[a] ∥ z(X, {a} ∪ Y))
as required.

Case E-Match

Assumption:

·; z : S,a : S,X : S,b : S,Y : S ⊢◦ z({a} ∪ X, {b} ∪ Y)
Recomposing:

·; z : S,X : S,Y : S ⊢◦ z(X,Y)
S/ϵ = S/ϵ · ⊢ ϵ : ϵ · ⊢ ϵ : ϵ

·;a : S,b : S ⊢◦ a(ϵ)↭b(ϵ)
·; z : S,a : S,X : S,b : S,Y : S ⊢◦ z(X,Y) ∥ a(ϵ)↭b(ϵ)

□
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(c) Entangled Delegation

Fig. 13. Cases of Distributed Delegation

E DISTRIBUTED DELEGATION
A key feature of π -calculus is mobility, that is, sending channel names as values. In session-based

languages and calculi, mobility is realised as session delegation, allowing session-typed channel

endpoints to be sent over other session-typed channels. We saw an example of session delegation

in §6, in the ChatClient type:

typename ChatClient =!Nickname.

[&|Join:?(Topic, [Nickname], ClientReceive).ClientSend,

Nope:End|&];

An endpoint of type ClientReceive is passed as a message.

E.1 Challenges of Distributed Delegation
Session delegation is a vital abstraction in session-based programming. However, its integration

with both asynchrony and distribution brings several challenges. The seminal work on distributed

delegation is Session Java [Hu et al. 2008].

Fig. 13 shows three scenarios of distributed delegation, as described by Hu et al. [2008]. We

write X
x
=⇒
y

Y to indicate that X wishes to send x to Y over y on the basis that X ’s last known

location of the corresponding endpoint for y is Y . Now suppose B
b
=⇒
c
C . Following Hu et al. [2008],

we refer to B as the session-sender, C as the session-receiver, and A as a passive party. There is no
happens-before relation between A sending a message to B along a, and B delegating b to C along

c . Thus, a message could be sent to A after A has given up control of a. Following Hu et al. [2008],

we call such messages lost messages.
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1. A → S : Send(t ,v, [b 7→ −→
V ])

2. A : start recording lost messages
−→
W for b

3. S : σ = σ [b 7→ B];δ = δ ∪ {t}
4. S → B : Deliver(t ,v, [b 7→ −→

V ])
5. S → A : GetLostMessages([b])
6. A : stop recording lost messages for b
7. A → S : LostMessageResponse([b 7→ −→

W ])
8. S → B : Commit(t , [b 7→ −→

W ])
9. S : δ = δ\{t}
10. B : buffers[b] = −→

V ++
−→
W ++

−→
U

where

−→
U = messages received for b between (3) and (8)

Fig. 14. Operation of Distributed Delegation Protocol

E.2 Approaches to Distributed Delegation
The simplest safe way to implement distributed delegation is to store all buffers on the server, but

this requires a blocking remote call for every receive operation. A second naïve method is indefinite
redirection, where the session-sender indefinitely forwards all messages to the session-receiver.

This retains buffer locality, but requires the session-sender to remain online for the duration of the

delegated session.

Hu et al. [2008] describe twomore realistic distributed delegation algorithms: a resending protocol,
which re-sends lost messages after a connection for the delegated session is established, and a

forwarding protocol, which forwards lost messages before the delegated session is established. The

key idea behind both algorithms is to establish a connection between the passive party and the

session-receiver, ensure that the lost messages are received by the session-receiver, and to continue

the session only once lost messages are received.

E.3 Delegation in Distributed Session Links
Alas, we cannot directly re-use the resending and forwarding protocols of Hu et al. [2008] because

of two fundamental differences in our setting: Links clients do not connect to each other directly,

and in Links multiple sessions may be sent at once. Thus, we describe the high-level details of a

modified algorithm which addresses these two constraints. We utilise two key ideas:

• Much like the resending protocol, lost messages are retrieved and relayed to the session-

receiver once the new session has been established.

• We ensure the session-receiver endpoint is not delegated until the delegation has completed,

by queueing messages that include the session-receiver endpoint, and resending them once

delegation has completed.

We now consider the case where session-sender and session-receiver are different clients; the

case where session-sender is a client and session-receiver the server is similar. Let client A be

session-sender and client B be session-receiver.

Example. Suppose client A sends a value v containing a session endpoint d along channel (s, t),
recalling that s is the peer endpoint and t is the local endpoint. The initial endpoint location table

is:

σ ≜ [s 7→ A, t 7→ B,b 7→ A, c 7→ A]
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Fig. 14 shows the operation of the delegation protocol on this example. In Step 1,A sends a message

to the server S , containing the peer endpoint t , value to send v , and the buffer

−→
V for b, before

beginning to record lost messages for b. Upon receiving this message, the server updates its internal

mapping for the location of b to be B, adds t to the set of delegation carriers δ , and sends a Deliver
message containing t , v , and

−→
V , before sending a GetLostMessages request to A. Upon receiving

this message, A will stop recording lost messages for b, and relay the lost messages

−→
W for b to

S . The server then sends a Commit message containing t and the lost messages for all delegated

endpoints, and removes t from the set of delegation carriers.

The final buffer for b is the concatenation of the initial buffer

−→
V , the lost messages

−→
W , and all

messages

−→
U received for b before the Commit message.

E.4 Correctness
We argue correctness of the algorithm in a similar manner to Hu et al. [2008]. Due to co-operative

threading, we can treat each sequence of actions happening at a single participant (for example,

steps 3–8) as atomic. Since (as per step 3) the endpoint location table is updated prior to the lost

message request, we can safely split the buffer of the delegated session into three parts: the initial

buffer being delegated (

−→
V ); the lost messages (

−→
W ); and the messages received after the change in

the lookup table but before the Commit message is received (

−→
U ) and reassemble them, retaining

ordering.

In our setting, since session channels are not associated with sockets, simultaneous delegation

(Fig. 13b) can be handled in the same way as simple delegation. In the case of entangled delegation

(Fig. 13c), since delegation carriers may not be delegated themselves until the lost messages have

been received, we can be sure that the lost message requests are sent to the correct participant.

Hence, the case devolves to simple delegation.
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