
The essence of functional programming

Philip Wadler, University of Glasgow∗

Abstract

This paper explores the use monads to structure functional programs. No prior

knowledge of monads or category theory is required.

Monads increase the ease with which programs may be modified. They can

mimic the effect of impure features such as exceptions, state, and continuations;

and also provide effects not easily achieved with such features. The types of a

program reflect which effects occur.

The first section is an extended example of the use of monads. A simple inter-

preter is modified to support various extra features: error messages, state, output,

and non-deterministic choice. The second section describes the relation between

monads and continuation-passing style. The third section sketches how monads are

used in a compiler for Haskell that is written in Haskell.

1 Introduction

Shall I be pure or impure?
Pure functional languages, such as Haskell or Miranda, offer the power of lazy eval-

uation and the simplicity of equational reasoning. Impure functional languages, such as
Standard ML or Scheme, offer a tempting spread of features such as state, exception
handling, or continuations.

One factor that should influence my choice is the ease with which a program can be
modified. Pure languages ease change by making manifest the data upon which each
operation depends. But, sometimes, a seemingly small change may require a program in
a pure language to be extensively restructured, when judicious use of an impure feature
may obtain the same effect by altering a mere handful of lines.

Say I write an interpreter in a pure functional language.
To add error handling to it, I need to modify the result type to include error values,

and at each recursive call to check for and handle errors appropriately. Had I used an
impure language with exceptions, no such restructuring would be needed.

∗Author’s address: Department of Computing Science, University of Glasgow, Glasgow G12 8QQ,

Scotland. E-mail: wadler@dcs.glasgow.ac.uk.

Presented as an invited talk at 19’th Annual Symposium on Principles of Programming Languages, Al-

buquerque, New Mexico, January 1992. This version differs slightly from the conference proceedings.

1

To add an execution count to it, I need to modify the the result type to include such
a count, and modify each recursive call to pass around such counts appropriately. Had
I used an impure language with a global variable that could be incremented, no such
restructuring would be needed.

To add an output instruction to it, I need to modify the result type to include an
output list, and to modify each recursive call to pass around this list appropriately. Had
I used an impure language that performed output as a side effect, no such restructuring
would be needed.

Or I could use a monad.
This paper shows how to use monads to structure an interpreter so that the changes

mentioned above are simple to make. In each case, all that is required is to redefine the
monad and to make a few local changes. This programming style regains some of the
flexibility provided by various features of impure languages. It also may apply when there
is no corresponding impure feature.

The technique applies not just to interpreters, but to a wide range of functional pro-
grams. The GRASP team at Glasgow is constructing a compiler for the functional lan-
guage Haskell. The compiler is itself written in Haskell, and uses monads to good effect.
Though this paper concentrates on the use of monads in a program tens of lines long, it
also sketches our experience using them in a program three orders of magnitude larger.

Programming with monads strongly reminiscent of continuation-passing style (CPS),
and this paper explores the relationship between the two. In a sense they are equivalent:
CPS arises as a special case of a monad, and any monad may be embedded in CPS by
changing the answer type. But the monadic approach provides additional insight and
allows a finer degree of control.

The concept of a monad comes from category theory, but this paper assumes no
prior knowledge of such arcana. Rather, it is intended as a gentle introduction, with an
emphasis on why abstruse theory may be of interest to computing scientists.

The examples will be given in Haskell, but no knowledge of that is needed either. What
the reader will require is a passing familiarity with the basics of pure and impure functional
programming; for general background see [BW87, Pau91]. The languages refered to are
Haskell [HPW91], Miranda1 [Tur90], Standard ML [MTH90], and Scheme [RC86].

Some readers will recognise that the title of this paper is a homage to Reynolds [Rey81]
and that the use of monads was inspired by Moggi [Mog89a, Mog89b]. Of these matters
more will be said in the conclusion. For now, please note that the word “essence” is used
in a technical sense: I wish to argue that the technique described in this paper is helpful,
not that it is necessary.

The remainder of this paper is organised as follows. Section 2 illustrates the use of
monads to structure programs by considering several variations of an interpreter. Section 3
explores the relation between monads and continuation-passing style. Section 4 sketches
how these ideas have been applied in a compiler for Haskell that is itself written in Haskell.
Section 5 concludes.

1Miranda is a trademark of Research Software Limited.

2

2 Interpreting monads

This section demonstrates the thesis that monads enhance modularity, by presenting
several variations of a simple interpreter for lambda calculus.

The interpreter is shown in Figure 1. It is written in Haskell. The notation
(\name -> expr) stands for a lambda expression, and ‘name‘ is an infix operator. The
type constructor M and functions unitM, bindM, and showM have to do with monads, and
are explained below.

The interpreter deals with values and terms. A value is either Wrong, a number, or a
function. The value Wrong indicates an error, such as an unbound variable, an attempt
to add non-numbers, or an attempt to apply a non-function.

A term is either a variable, a constant, a sum, a lambda expression, or an application.
The following will serve as test data.

term0 = (App (Lam "x" (Add (Var "x") (Var "x")))

(Add (Con 10) (Con 11)))

In more conventional notation this would be written ((λx. x + x) (10 + 11)). For the
standard interpreter, evaluating test term0 yields the string "42".

The interpreter has been kept small for ease of illustration. It can easily been extended
to deal with additional values, such as booleans, pairs, and lists; and additional term
forms, such as conditional and fixpoint.

2.1 What is a monad?

For our purposes, a monad is a triple (M,unitM,bindM) consisting of a type constructor
M and a pair of polymorphic functions.

unitM :: a -> M a

bindM :: M a -> (a -> M b) -> M b

These functions must satisfy three laws, which are discussed in Section 2.10.
The basic idea in converting a program to monadic form is this: a function of type

a -> b is converted to one of type a -> M b. Thus, in the definition of Value, func-
tions have type Value -> M Value rather than Value -> Value, and interp has type
Term -> Environment -> M Value rather than type Term -> Environment -> Value.
Similarly for the auxiliary functions lookup, add, and apply.

The identity function has type a -> a. The corresponding function in monadic form
is unitM, which has type a -> M a. It takes a value into its corresponding representation
in the monad.

Consider the case for constants.

interp (Con i) e = unitM (Num i)

The expression (Num i) has type Value, so applying unitM to it yields the corresponding
M Value, as required to match the type of interp.

Two functions k :: a -> b and h :: b -> c may be composed by writing

3

type Name = String

data Term = Var Name

| Con Int

| Add Term Term

| Lam Name Term

| App Term Term

data Value = Wrong

| Num Int

| Fun (Value -> M Value)

type Environment = [(Name, Value)]

showval :: Value -> String

showval Wrong = "<wrong>"

showval (Num i) = showint i

showval (Fun f) = "<function>"

interp :: Term -> Environment -> M Value

interp (Var x) e = lookup x e

interp (Con i) e = unitM (Num i)

interp (Add u v) e = interp u e ‘bindM‘ (\a ->

interp v e ‘bindM‘ (\b ->

add a b))

interp (Lam x v) e = unitM (Fun (\a -> interp v ((x,a):e)))

interp (App t u) e = interp t e ‘bindM‘ (\f ->

interp u e ‘bindM‘ (\a ->

apply f a))

lookup :: Name -> Environment -> M Value

lookup x [] = unitM Wrong

lookup x ((y,b):e) = if x==y then unitM b else lookup x e

add :: Value -> Value -> M Value

add (Num i) (Num j) = unitM (Num (i+j))

add a b = unitM Wrong

apply :: Value -> Value -> M Value

apply (Fun k) a = k a

apply f a = unitM Wrong

test :: Term -> String

test t = showM (interp t [])

Figure 1: Interpretation in a monad (call-by-value)

4

\a -> let b = k a in h b

which has type a -> c. (Here \name -> expr is a lambda expression. By convention, a
will double as a type variable and a value variable.) Similarly, two functions in monadic
form k :: a -> M b and h :: b -> M c are composed by writing

(\a -> k a ‘bindM‘ (\b -> h b))

which has type a -> M c. (Here ‘name‘ is Haskell notation for an infix function. The
expression a ‘name‘ b is equivalent to name a b.) Thus bindM serves a role similar to a
let expression. The three monad laws alluded to above simply insure that this form of
composition is associative, and has unitM as a left and right identity.

Consider the case for sums.

interp (Add u v) e = interp u e ‘bindM‘ (\a ->

interp v e ‘bindM‘ (\b ->

add a b))

This can be read as follows: evaluate u; bind a to the result; evaluate v; bind b to the
result; add a to b. The types work out: the calls to interp and add yield results of type
M Value, and variables a and b have type Value.

Application is handled similarly; in particular, both the function and its argument
are evaluated, so this interpreter is using a call-by-value strategy. An interpreter with a
call-by-name strategy is discussed in Section 2.

Just as the type Value represents a value, the type M Value can be thought of as
representing a computation. The purpose of unitM is to coerce a value into a computation;
the purpose of bindM is to evaluate a computation, yielding a value.

Informally, unitM gets us into a monad, and bindM gets us around the monad. How
do we get out of the monad? In general, such operations require a more ad hoc design.
For our purposes, it will suffice to provide the following.

showM :: M Value -> String

This is used in test.
By changing the definitions of M, unitM, bindM, and showM, and making other small

changes, the interpreter can be made to exhibit a wide variety of behaviours, as will now
be demonstrated.

2.2 Variation zero: Standard interpreter

To begin, define the trivial monad.

type I a = a

unitI a = a

a ‘bindI‘ k = k a

showI a = showval a

5

This is called the identity monad: I is the identity function on types, unitI is the identity
function, bindI is postfix application, and showI is equivalent to showval.

Substitute monad I for monad M in the interpreter (that is, substitute I, unitI, bindI,
showI for each occurrence of M, unitM, bindM, showM). Simplifying yields the standard
meta-circular interpreter for lambda calculus:

interp :: Term -> Environment -> Value

interp (Var x) e = lookup x e

interp (Con i) e = Num i

interp (Add u v) e = add (interp u e) (interp v e)

interp (Lam x v) e = Fun (\a -> interp v ((x,a):e))

interp (App t u) e = apply (interp t e) (interp u e)

The other functions in the interpreter simplify similarly.
For this variant of the interpreter, evaluating test term0 returns the string "42", as

we would expect.

2.3 Variation one: Error messages

To add error messages to the interpreter, define the following monad.

data E a = Success a | Error String

unitE a = Success a

errorE s = Error s

(Success a) ‘bindE‘ k = k a

(Error s) ‘bindE‘ k = Error s

showE (Success a) = "Success: " ++ showval a

showE (Error s) = "Error: " ++ s

Each function in the interpreter either returns normally by yielding a value of the form
Success a, or indicates an error by yielding a value of the form Error s where s is an
error message. If m :: E a and k :: a -> E b then m ‘bindE‘ k acts as strict postfix
application: if m succeeds then k is applied to the successful result; if m fails then so
does the application. The show function displays either the successful result or the error
message.

To modify the interpreter, substitute monad E for monad M, and replace each occur-
rence of unitE Wrong by a suitable call to errorE. The only occurrences are in lookup,
add, and apply.

lookup x [] = errorE ("unbound variable: " ++ x)

add a b = errorE ("should be numbers: " ++ showval a

++ "," ++ showval b)

apply f a = errorE ("should be function: " ++ showval f)

6

No other changes are required.
Evaluating test term0 now returns "Success: 42"; and evaluating

test (App (Con 1) (Con 2))

returns "Error: should be function: 1".
In an impure language, this modification could be made using exceptions or continu-

ations to signal an error.

2.4 Variation two: Error messages with positions

Let Position be a type that indicates a place in the source text (say, a line number).
Extend the Term datatype with a constructor that indicates a location:

data Term = ... | At Position Term

The parser will produce such terms as suitable. For instance, (At p (App t (At q u)))

indicates that p is the position of the term (App t u) and that q is the position of the
subterm u.

Based on E, define a new monad P that accepts a position to use in reporting errors.

type P a = Position -> E a

unitP a = \p -> unitE a

errorP s = \p -> errorE (showpos p ++ ": " ++ s)

m ‘bindP‘ k = \p -> m p ‘bindE‘ (\x -> k x p)

showP m = showE (m pos0)

Here unitP discards the current position, errorP adds it to the error message, bindP
passes the position to the argument and function, and showP passes in an initial position
pos0. In addition, there is a function to change position.

resetP :: Position -> P x -> P x

resetP q m = \p -> m q

This discards the position p that is passed in, replacing it with the given position q.
To modify the interpreter of the previous section, substitute monad P for monad E

and add a case to deal with At terms.

interp (At p t) e = resetP p (interp t e)

This resets the position as indicated. No other change is required.
Without monads, or a similar technique, this modification would be far more tedious.

Each clause of the interpreter would need to be rewritten to accept the current position
as an additional parameter, and to pass it on as appropriate at each recursive call.

In an impure language, this modification is not quite so easy. One method is to use
a state variable that contains a stack of positions. Care must be taken to maintain the
state properly: push a position onto the stack on entering the At construct and pop a
position off the stack when leaving it.

7

2.5 Variation three: State

To illustrate the manipulation of state, the interpreter is modified to keep count of the
number of reductions that occur in computing the answer. The same technique could
be used to deal with other state-dependent constructs, such as extending the interpreted
language with reference values and operations that side-effect a heap.

The monad of state transformers is defined as follows.

type S a = State -> (a, State)

unitS a = \s0 -> (a, s0)

m ‘bindS‘ k = \s0 -> let (a,s1) = m s0

(b,s2) = k a s1

in (b,s2)

A state transformer takes an initial state and returns a value paired with the new state.
The unit function returns the given value and propagates the state unchanged. The bind
function takes a state transformer m :: S a and a function k :: a -> S b. It passes the
initial state to the transformer m; this yields a value paired with an intermediate state;
function k is applied to the value, yielding a state transformer (k a :: S b), which is
passed the intermediate state; this yields the result paired with the final state.

To model execution counts, take the state to be an integer.

type State = Int

The show function is passed the initial state 0 and prints the final state as a count.

showS m = let (a,s1) = m 0

in "Value: " ++ showval a ++ "; " ++

"Count: " ++ showint s1

The current count is incremented by the following.

tickS :: S ()

tickS = \s -> ((), s+1)

The value returned is the empty tuple () whose type is also written (). The typing of
tickS makes clear that the value returned is not of interest. It is analogous to the use in
an impure language of a function with result type (), indicating that the purpose of the
function lies in a side effect.

The interpreter is modified by substituting monad S for monad M, and changing the
first lines of apply and add.

apply (Fun k) a = tickS ‘bindS‘ (\() -> k a)

add (Num i) (Num j) = tickS ‘bindS‘ (\() -> unitS (Num (i+j)))

8

This counts one tick for each application and addition. No other changes are required.
Evaluating test term0 now returns "Value: 42; Count: 3".
A further modification extends the language to allow access to the current execution

count. First, add a further operation to the monad.

fetchS :: S State

fetchS = \s -> (s, s)

This returns the current count. Second, extend the term data type, and add a new clause
to the interpreter.

data Term = ... | Count

interp Count e = fetchS ‘bindS‘ (\i -> unitS (Num i))

Evaluating Count fetches the number of execution steps performed so far, and returns it
as the value of the term.

For example, applying test to

(Add (Add (Con 1) (Con 2)) Count)

returns "Value: 4; Count: 2", since one addition occurs before Count is evaluated.
In an impure language, these modifications could be made using state to contain the

count.

2.6 Variation four: Output

Next we modify the interpreter to perform output. The state monad seems a natural
choice, but it’s a poor one: accumulating the output into the final state means no output
will be printed until the computation finishes. The following design displays output as it
occurs; it depends on lazy evaluation.

The output monad is defined as follows.

type O a = (String, a)

unitO a = ("", a)

m ‘bindO‘ k = let (r,a) = m; (s,b) = k a in (r++s, b)

showO (s,a) = "Output: " ++ s ++ " Value: " ++ showval a

Each value is paired with the output produced while computing that value. The unitO

function returns the given value and produces no output. The bindO function performs
an application and concatenates the output produced by the argument to the output
produced by the application. The showO function prints the output followed by the value.

The above functions propagate output but do not generate it; that is the job of the
following.

outO :: Value -> O ()

outO a = (showval a ++ "; ", ())

9

This outputs the given value followed by a semicolon.
The language is extended with an output operation. Substitute monad O for monad

M, and add an a new term and corresponding clause.

data Term = ... | Out Term

interp (Out u) e = interp u e ‘bindO‘ (\a ->

outO a ‘bindO‘ (\() ->

unitO a))

Evaluating (Out u) causes the value of u to be sent to the output, and returned as the
value of the term.

For example, applying test to

(Add (Out (Con 41)) (Out (Con 1)))

returns "Output: 41; 1; Value: 42".
In an impure language, this modification could be made using output as a side effect.

2.7 Variation five: Non-deterministic choice

We now modify the interpreter to deal with a non-deterministic language that returns a
list of possible answers.

The monad of lists is defined as follows.

type L a = [a]

unitL a = [a]

m ‘bindL‘ k = [b | a <- m, b <- k a]

zeroL = []

l ‘plusL‘ m = l ++ m

showL m = showlist [showval a | a <- m]

This is expressed with the usual list comprehension notation. The function showlist

takes a list of strings into a string, with appropriate punctuation.
The interpreted language is extended with two new constructs. Substitute monad L

for monad M, and add two new terms and appropriate clauses.

data Term = ... | Fail | Amb Term Term

interp Fail e = zeroL

interp (Amb u v) e = interp u e ‘plusL‘ interp v e

Evaluating Fail returns no value, and evaluating (Amb u v) returns all values returned
by u or v.

For example, applying test to

10

(App (Lam "x" (Add (Var "x") (Var "x"))) (Amb (Con 1) (Con 2)))

returns "[2,4]".
It is more difficult to see how to make this change in an impure language. Perhaps

one might create some form of coroutine facility.

2.8 Variation six: Backwards state

Return now to the state example of Section 2.5. Lazy evaluation makes possible a strange
variation: the state may be propogated backward.

All that is required is to change the definition of bindS.

m ‘bindS‘ k = \s2 -> let (a,s0) = m s1

(b,s1) = k a s2

in (b,s0)

This takes the final state as input, and returns the initial state as output. As before,
the value a is generated by m and passed to k. But now the initial state is passed to k, the
intermediate state goes from k to m, and the final state is returned by m. The two clauses
in the let expression are mutually recursive, so this works only in a lazy language.

The Count term defined in Section 2.5 now returns the number of steps to be performed
between its evaluation and the end of execution. As before, applying test to

(Add (Add (Con 1) (Con 2)) Count)

returns "Value: 4; Count: 2", but for a different reason: one addition occurs after the
point at which Count is evaluated. An unresolvable mutual dependence, known as a
black hole, would arise in the unfortunate situation where the number of steps yet to be
performed depends on the value returned by Count. In such a case the interpreter would
fail to terminate or terminate abnormally.

This example may seem contrived, but this monad arises in practice. John Hughes
and I discovered it by analysing a text processing algorithm that passes information both
from left to right and right to left.

To make this change in an impure language is left as an exercise for masochistic readers.

2.9 Call-by-name interpreter

The interpreter of Figure 1 is call-by-value. This can be seen immediately from the
types. Functions are represented by the type Value -> M Value, so the argument to a
function is a value, though the result of applying a function is a computation.

The corresponding call-by-name interpreter is shown in Figure 2. Only the types and
functions that differ from Figure 1 are shown. The type used to represent functions is now
M Value -> M Value, so the argument to a function is now a computation. Similarly,
the environment is changed to contain computations rather than values. The code for
interpreting constants and addition is unchanged. The code for variables and lambda

11

data Value = Wrong

| Num Int

| Fun (M Value -> M Value)

type Environment = [(Name, M Value)]

interp :: Term -> Environment -> M Value

interp (Var x) e = lookup x e

interp (Con i) e = unitM (Num i)

interp (Add u v) e = interp u e ‘bindM‘ (\a ->

interp v e ‘bindM‘ (\b ->

add a b))

interp (Lam x v) e = unitM (Fun (\m -> interp v ((x,m):e)))

interp (App t u) e = interp t e ‘bindM‘ (\f ->

apply f (interp u e))

lookup :: Name -> Environment -> M Value

lookup x [] = unitM Wrong

lookup x ((y,n):e) = if x==y then n else lookup x e

apply :: Value -> M Value -> M Value

apply (Fun h) m = h m

apply f m = unitM Wrong

Figure 2: Interpretation in a monad (call-by-name)

abstraction looks the same but has changed subtly: previously variables were bound to
values, now they are bound to computations. (Hence a small change in lookup: a call to
unitM has vanished.) The code for application does change: now the function is evaluated
but not the argument.

The new interpreter can be modified in the same way as the old one.
If modified for execution counts as in Section 2.5, the cost of an argument is

counted each time it is evaluated. Hence evaluating test term0 now returns the string
"Value: 42; Count: 4", because the cost of adding 10 to 11 is counted twice. (Compare
this with a count of 3 for the call-by-value version.)

If modified for a non-deterministic language as in Section 2.7, then a term may return
a different value each time it is evaluated. For example, applying test to

(App (Lam "x" (Add (Var "x") (Var "x"))) (Amb (Con 1) (Con 2)))

now returns "[2,3,3,4]". (Compare this with "[2,4]" for the call-by-value version).
An advantage of the monadic style is that the types make clear where effects occur.

Thus, one can distinguish call-by-value from call-by-name simply by examining the types.
If one uses impure features in place of monads, the clues to behaviour are more obscure.

12

2.10 Monad laws

For (M,unitM,bindM) to qualify as a monad, the following laws must be satisfied.

Left unit: (unitM a) ‘bindM‘ k = k a

Right unit: m ‘bindM‘ unitM = m

Associative: m ‘bindM‘ (\a -> (k a) ‘bindM‘ (\b -> h b))

= (m ‘bindM‘ (\a -> k a)) ‘bindM‘ (\b -> h b)

These laws guarantee that monadic composition, as discussed in Section 2.1, is associative
and has a left and right unit. It is easy to verify that the monads described in this paper
do satisfy these laws.

To demonstrate the utility of these laws, consider the task of proving that

(Add t (Add u v)) and (Add (Add t u) v)

always return the same value.
Simplify the left term:

interp (Add t (Add u v)) e

= interp t e ‘bindM‘ (\a ->

interp (Add u v) e ‘bindM‘ (\y ->

add a y))

= interp t e ‘bindM‘ (\a ->

(interp u e ‘bindM‘ (\b ->

interp v e ‘bindM‘ (\c ->

add b c))) ‘bindM‘ (\y ->

add a y))

= interp t e ‘bindM‘ (\a ->

interp u e ‘bindM‘ (\b ->

interp v e ‘bindM‘ (\c ->

add b c ‘bindM‘ (\y ->

add a y)))).

The first two steps are simple unfolding; the third step is justified by the associative law.
Similarly, simplify the right term:

interp (Add (Add t u) v) e

= interp t e ‘bindM‘ (\a ->

interp u e ‘bindM‘ (\b ->

interp v e ‘bindM‘ (\c ->

add a b ‘bindM‘ (\x ->

add x c)))).

Again, this is two unfold steps and a use of the associative law. It remains to prove that

13

add a b ‘bindM‘ (\x -> add x c) = add b c ‘bindM‘ (\y -> add y a).

This is done by case analysis. If a, b, c have the forms Num i, Num j, Num k then the
result is unitM (i+j+k), as follows from two uses of the left unit law and the associativity
of addition; otherwise the result is Wrong, also by the left unit law.

The above proof is trivial. Without the monad laws, it would be impossible.
As another example, note that for each monad we can define the following operations.

mapM :: (a -> b) -> (M a -> M b)

mapM f m = m ‘bindM‘ (\a -> unitM (f a))

joinM :: M (M a) -> M a

joinM z = z ‘bindM‘ (\m -> m)

For the list monad of Section 2.7, mapM is the familiar map function, and joinM concate-
nates a list of lists. Using id for the identity function (id x = x), and (.) for function
composition ((f.g) x = f (g x)), one can then formulate a number of laws.

mapM id = id

mapM (f.g) = mapM f . mapM g

mapM f . unitM = unitM . f

mapM f . joinM = joinM . mapM (mapM f)

joinM . unitM = id

joinM . mapM unitM = id

joinM . mapM joinM = joinM . joinM

m ‘bindM‘ k = joinM (mapM k m)

The proof of each is a simple consequence of the three monad laws.
Often, monads are defined not in terms of unitM and bindM, but rather in terms of

unitM, jointM, and mapM [Mac71, LS86, Mog89a, Wad90]. The three monad laws are
replaced by the first seven of the eight laws above. If one defines bindM by the eighth law,
then the three monad laws follow. Hence the two definitions are equivalent.

As described in [Wad90], the list comprehension notation generalises to an arbitrary
monad. That paper gives the following translations:

[t] = unitM t

[t | x <- u] = mapM (\x -> t) u

[t | x <- u, y <- v] = joinM (mapM (\x -> mapM (\y -> t) v) u)

For the list monad, this yields the usual notion of list comprehension. In the notation of
this paper, the translation may be expressed as follows.

[t] = unitM t

[t | x <- u] = u ‘bindM‘ (\x -> unitM t)

[t | x <- u, y <- v] = u ‘bindM‘ (\x -> v ‘bindM‘ (\y -> unitM t))

The notation on the right, if not a comprehension, is at least comprehensible. The equiv-
alence of the two translations follows from the monad laws.

14

3 Continuing monads

The purpose of this section is to compare the monadic style advocated in Section 2 with
continuation-passing style (CPS).

Continuation-passing style was first developed for use with denotational semantics
[Rey72, Plo75]. It provides fine control over the execution order of a program, and has
become popular as an intermediate language for compilers [SS76, AJ89]. This paper
stresses the modularity afforded by CPS, and in this sense has similar goals to the work
of Danvy and Filinski [DF90].

3.1 CPS interpreter

The monad of continuations is defined as follows.

type K a = (a -> Answer) -> Answer

unitK a = \c -> c a

m ‘bindK‘ k = \c -> m (\a -> k a c)

In CPS, a value a (of type a) is represented by a function that takes a continuation c (of
type a -> Answer) and applies the continuation to the value, yielding the final result c a

(of type Answer). Thus, unitK a yields the CPS representation of a. If m :: K a and
k :: a -> K b, then m ‘bindK‘ k acts as follows: bind c to the current continuation,
evaluate m, bind the result to a, and apply k to a with continuation c.

Substituting monad K for monad M in the interpreter and simplifying yields an inter-
preter written in CPS.

interp :: Term -> Environment -> (Value -> Answer) -> Answer

interp (Var x) e = \c -> lookup x e c

interp (Con i) e = \c -> c (Num i)

interp (Add u v) e = \c -> interp u e (\a ->

interp v e (\b ->

add a b c))

interp (Lam x v) e = \c -> c (Fun (\a -> interp v ((x,a):e)))

interp (App t u) e = \c -> interp t e (\f ->

interp u e (\a ->

apply f a c))

The functions lookup, add, and apply now also take continuations. The line defining Add
can be read: Let c be the current continuation, evaluate u, bind a to the result, evaluate
v, bind b to the result, and add a to b with continuation c.

This reading is closely related to the monadic reading given in Section 2.1, and indeed
the CPS and monadic versions are quite similar: the CPS version can be derived from the
monadic one by simply eliding each occurrence of ‘bindM‘, and adding bits to the front
and end to capture and pass on the continuation c. The second argument to ‘bindM‘ has

15

type a -> (b -> Answer) -> Answer; this is what k ranges over. A continuation has
type b -> Answer; this is what c ranges over. Both k and c serve similar roles, acting as
continuations at different levels.

The Answer type may be any type rich enough to represent the final result of a
computation. One choice is to take an answer to be a value.

type Answer = Value

This determines the definition of showK.

showK m = showval (m id)

Here m :: K Value is passed the identity function id :: Value -> Value as a contin-
uation, and the resulting Value is converted to a string. Evaluating test term0 returns
"42", as before.

Other choices for the Answer type will be considered in Section 3.3

3.2 Call with current continuation

Having converted our interpreter to CPS, it is now straightforward to add the call with
current continuation (callcc) operation, found in Scheme [RC86] and Standard ML of New
Jersey [DHM91].

The following operation captures the current continuation and passes it into the current
expression.

callccK :: ((a -> K b) -> K a) -> K a

callccK h = \c -> let k a = \d -> c a in h k c

The argument to callccK is a function h, which is passed a function k of type (a -> K b).
If k is called with argument a, it ignores its continuation d and passes a to the captured
continuation c instead.

To add callcc to the interpreted language, add an appropriate term and a new case to
the interpreter.

data Term = ... | Callcc Name Term

interp (Callcc x v) e = callccK (\k -> interp v ((x, Fun k):e))

This uses callccK to capture the current continuation k, and evaluates v with x bound
to a function that acts as k.

For example, applying test to

(Add (Con 1) (Callcc "k" (Add (Con 2) (App (Var "k") (Con 4)))))

returns "5".

16

3.3 Monads and CPS

We have seen that by choosing a suitable monad, the monad interpreter becomes a CPS
interpreter. A converse property is also true: by choosing a suitable space of answers, a
CPS interpreter can act as a monad interpreter.

The general trick is as follows. To achieve the effects of a monad M in CPS, redefine
the answer type to include an application of M.

type Answer = M Value

The definition of showK is modified accordingly.

showK n = showM (n unitM)

Here n :: K Value is passed unitM :: Value -> M Value as a continuation, and the
resulting M Value is converted to a string by showM.

Just as unitM converts a value of type a into type M a, values of type M a can be
converted into type K a as follows.

promoteK :: M a -> K a

promoteK m = \c -> m ‘bindM‘ c

Since m :: M a and c :: a -> M Value, the type of m ‘bindM‘ c is M Value, as re-
quired.

For example, to incorporate error messages, take M to be the monad E defined in
Section 2.3. We then calculate as follows:

errorK :: String -> (a -> E Value) -> E Value

errorK s = promoteK (errorE s)

= \c -> (errorE s) ‘bindE‘ c

= \c -> Error s ‘bindE‘ c

= \c -> Error s

The equalities follow by applying the definitions of promoteK, errorE, and bindE, respec-
tively. We can take the last line as the definition of errorK. As we would expect, this
simply ignores the continuation and returns the error as the final result.

The last section stressed that monads support modularity. For example, modifying
the monadic interpreter to handle errors requires few changes: one only has to substitute
monad E for monad M and introduce calls to errorE at appropriate places. CPS supports
modularity in a similar way. For example, modifying the CPS interpreter to handle errors
is equally simple: one only has to change the definitions of Answer and test, and introduce
calls to errorK at appropriate places.

Execution counts (as in Section 2.5) and output (as in Section 2.6) may be incorporated
into continuation-passing style similarly. For execution counts, take Answer = S Value

and calculate a continuation version of tickS.

17

tickK :: (() -> S Value) -> S Value

tickK = promoteK tickS

= \c -> tickS ‘bindS‘ c

= \c -> (\s -> ((), s+1)) ‘bindS‘ c

= \c -> \s -> c () (s+1)

For output, take Answer = O Value and calculate a continuation version of outO.

outK :: Value -> (Value -> O Value) -> O Value

outK a = promoteK (outO a)

= \c -> (outO a) ‘bindO‘ c

= \c -> (showval a ++ "; ", ()) ‘bindO‘ c

= \c -> let (s,b) = c () in (showval a ++ "; " ++ s, b)

In both cases, the modifications to the CPS version of the interpreter are as simple as
those to the monadic version.

3.4 Monads vs. CPS

Given the results of the previous section, one may wonder whether there is any real
difference between monads and CPS. With monads, one writes

m ‘bindM‘ (\a -> k a)

and with CPS one writes

(\c -> m (\a -> k a c))

and the choice between these seems little more than a matter of taste.
There is a difference. Each of the monad types we have described may be turned into

an abstract data type, and that provides somewhat finer control than CPS. For instance,
we have seen that the CPS analogue of the monad type S a is the type

(a -> S Value) -> S Value.

This latter type contains values such as

\c -> \s -> (Wrong, c).

This provides an error escape: it ignores the current continuation and always returns
Wrong. The state monad S provides no such escape facility. With monads, one can choose
whether or not to provide an escape facility; CPS provides no such choice.

We can recover this facility for CPS by turning continuations into an abstract data
type, and providing unitK and bindK as operations, but not providing callccK. So CPS
can provide the same fine control as monads – if CPS is expressed as a monad!

Perhaps a more significant difference between monads and CPS is the change of view-
point. Monads focus attention on the question of exactly what abstract operations are
required, what laws they satisfy, and how one can combine the features represented by
different monads.

18

4 Experiencing monads

Each phase of the Haskell compiler is associated with a monad.
The type inference phase uses a monad with an error component (similar to E in

Section 2.3), a position component (similar to P in Section 2.4), and two state components
(similar to S in Section 2.5). The state components are a name supply, used to generate
unique new variable names, and a current substitution, used for unification.

The simplification phase uses a monad with a single single state component, which is
again a name supply.

The code generator phase uses a monad with three state components: a list of the
code generated so far, a table associating variable names with addressing modes, and a
second table that caches what is known about the state of the stack at execution time.

In each case, the use of a monad greatly simplifies bookkeeping. The type inferencer
would be extremely cluttered if it was necessary to mention explicitly at each step how
the current substitution, name supply, and error information are propagated; for a hint
of the problems, see [Han87]. The monads used have been altered several times without
difficulty. The change to the interpreter described in Section 2.4 was based on a similar
change made to the compiler.

The compiler has just begun to generate code, and a full assesment lies in the future.
Our early experience supports the claim that monads enhance modularity.

5 Conclusion

5.1 The future

This work raises a number of questions for the future.
What are the limits of this technique? It would be desirable to characterise what sort

of language features can be captured by monads, and what sort cannot. Call-by-value
and call-by-name translations of lambda calculus into a monad are well known; it remains
an open question whether there might be a call-by-need translation that evaluates each
argument at most once.

Is syntactic support desirable? The technique given here, while workable, has a certain
syntactic clumsiness. It may be better to provide an alternative syntax. One possibility
is to provide

letM a <- m in k a

as alternative syntax for m ‘bindM‘ (\a -> k a). Another possiblity arises from monad
comprehensions [Wad90].

What about efficiency? The style advocated here makes heavy use of data abstraction
and higher-order functions. It remains to be seen what impact this has on efficiency, and
the GRASP team looks forward to examining the performance of our completed Haskell
compiler. We are hopeful, since we have placed high priority on making the relevant
features inexpensive.

19

How does one combine monads? The monads used in the Haskell compiler involve a
combination of features; for instance, the type inferencer combines state and exceptions.
There is no general technique for combining two arbitrary monads. However, Section 3.3
shows how to combine continuations with any other monad; and similar techniques are
available for the state, exception, and output monads [Mog89a, Mog89b]. One might
form a library of standard monads with standard ways of combining them. This would
be aided by parameterised modules, which are present in Miranda and Standard ML, but
absent in Haskell.

Should certain monads be provided as primitive? Monads may encapsulate impure
effects in a pure way. For example, when the state is an array, the state monad can
safely update the array by overwriting, as described in [Wad90]. Kevin Hammond and
I have built an interface that allows Haskell programs to call C routines, using monads
to sequence the calls and preserve referential transparency. The effect is similar to the
“abstract continuations” used in Hope+C [Per87].

How do monads compare to other approaches to state? Several new approaches to
state in pure functional languages have emerged recently, based on various type disciplines
[GH90, SRI91, Wad91]. These need to be compared with each other and with the monad
approach.

Can type inference help? By examining where monads appear in the types of a pro-
gram, one determines in effect where impure features are used. In this sense, the use
of monads is similar to the use of effect systems as advocated by Gifford, Jouvelot, and
others, in which a type system infers where effects occur [GL86, JG91]. An intriguing
question is whether a similar form of type inference could apply to a language based on
monads.

5.2 The past

Finally, something should be said about the origin of these ideas.
The notion of monad comes from category theory [Mac71, LS86]. It first arose in

the area of homological algebra, but later was recognised (due to the work of Kleisli
and of Eilenberg and Moore) to have much wider applications. Its importance emerged
slowly: in early days, it was not even given a proper name, but called simply a “standard
construction” or a “triple”. The formulation used here is due to Kleisli.

Eugenio Moggi proposed that monads provide a useful structuring tool for denotational
semantics [Mog89a, Mog89b]. He showed how lambda calculus could be given call-by-value
and call-by-name semantics in an arbitrary monad, and how monads could encapsulate
a wide variety of programming language features such as state, exception handling, and
continuations.

Independent of Moggi, but at about the same time, Michael Spivey proposed that
monads provide a useful structuring tool for exception handling in pure functional lan-
guages, and demonstrated this thesis with an elegant program for term rewriting [Spi90].
He showed how monads could treat exceptions (as in Section 2.3) and non-deterministic
choice (as in Section 2.7) in a common framework, thus capturing precisely a notion that

20

I had groped towards years earlier [Wad85].
Inspired by Moggi and Spivey, I proposed monads as a general technique for structuring

functional programs. My early proposals were based on a special syntax for monads, that
generalised list comprehensions [Wad90]. This was unfortunate, in that it led many to
think a special syntax was needed. This new presentation is designed to convey that
monads can be profitably applied to structure programs today with existing languages.

A key observation of Moggi’s was that values and computations should be assigned
different types: the value type a is distinct from the computation type M a. In a call-by-
value language, functions take values into computations (as in a -> M b); in a call-by-
name language, functions take computations into computations (as in M a -> M b).

John Reynolds made exactly the same point a decade ago [Rey81]. The essence of
Algol, according to Reynolds, is a programming language that distinguishes data types
from phrase types. In his work data types (such as int) play the roles of values, and phrase
types (such as int exp) play the role of computations, and the same distinction between
call-by-value and call-by-name appears. These ideas form the basis for the design of
Forsythe [Rey89a]. But the vital unitM and bindM operations do not appear in Reynolds’
work.

This is not the only time that John Reynolds has been a decade ahead of the rest of
us. Among other things, he was an early promoter of continuation-passing style [Rey72]
and the first to apply category theory to language design [Rey80, Rey81]. One intriguing
aspect of his recent work is the use of intersection types [Rey89a, Rey89b, Rey91], so
perhaps we should expect an upsurge of interest in that topic early in the next millenium.

This paper demonstrates that monads provide a helpful structuring technique for
functional programs, and that the essence of impure features can be captured by the use
of monads in a pure functional language.

In Reynolds’ sense of the word, the essence of Standard ML is Haskell.

Acknowledgements. The work on the Haskell compiler reported here is a joint effort of
the GRASP team, whose other members are Cordy Hall, Kevin Hammond, Will Partain,
and Simon Peyton Jones. For helpful comments on this work, I’m grateful to Donald
Brady, Geoffrey Burn, Stephen Eldridge, John Hughes, David King, John Launchbury,
Muffy Thomas, and David Watt.

References

[AJ89] A. Appel and T. Jim, Continuation-passing, closure-passing style. In 16’th
Symposium on Principles of Programming Languages, Austin, Texas; ACM,
January 1989.

[BW87] R. Bird and P. Wadler, Introduction to Functional Programming. Prentice Hall,
1987.

[DF90] O. Danvy and A. Filinski, Abstracting control. In Conference on Lisp and
Functional Programming, Nice, France; ACM, June 1990.

21

[DHM91] B. Duba, R. Harper, and D. MacQueen, Typing first-class continuations in
ML. In 18’th Symposium on Principles of Programming Languages, Orlando,
Florida; ACM, January 1991.

[GH90] J. Guzmán and P. Hudak, Single-threaded polymorphic lambda calculus. In
Symposium on Logic in Computer Science, Philadelphia, Pennsylvania; IEEE,
June 1990.

[GL86] D. K. Gifford and J. M. Lucassen, Integrating functional and imperative pro-
gramming. In Conference on Lisp and Functional Programming, 28–39, Cam-
bridge, Massachusetts; ACM, August 1986.

[Han87] P. Hancock, A type checker. Chapter 9 of Simon Peyton Jones, The Implemen-
tation of Functional Programming Languages, Prentice Hall, 1987.

[HPW91] P. Hudak, S. Peyton Jones and P. Wadler, editors, Report on the Programming
Language Haskell: Version 1.1. Technical report, Yale University and Glasgow
University, August 1991.

[JG91] P. Jouvelot and D. Gifford, Algebraic reconstruction of types and effects. In
18’th ACM Symposium on Principles of Programming Languages, Orlando,
Florida, January 1991.

[LS86] J. Lambek and P. Scott, Introduction to Higher Order Categorical Logic, Cam-
bridge University Press, 1986.

[Mac71] S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag,
1971.

[Mog89a] E. Moggi, Computational lambda-calculus and monads. In Symposium on Logic
in Computer Science, Asilomar, California; IEEE, June 1989. (A longer version
is available as a technical report from the University of Edinburgh.)

[Mog89b] E. Moggi, An abstract view of programming languges. Course notes, University
of Edinburgh.

[MTH90] R. Milner, M. Tofte, and R. Harper, The definition of Standard ML. MIT Press,
1990.

[Pau91] L. C. Paulson, ML for the Working Programmer. Cambridge University Press,
1991.

[Per87] N. Perry, Hope+C, a continuation extension for Hope+. Imperial College, De-
partment of Computing, Technical report IC/FPR/LANG/2.5.1/21, November
1987.

[Plo75] G. Plotkin, Call-by-name, call-by-value, and the λ-calculus. Theoretical Com-
puter Science, 1:125–159, 1975.

22

[RC86] J. Rees and W. Clinger (eds.), The revised3 report on the algorithmic language
Scheme. ACM SIGPLAN Notices, 21(12):37–79, 1986.

[Rey72] J. Reynolds, Definitional interpreters for higher-order programming languages.
In 25’th ACM National Conference, 717–740, 1972.

[Rey80] J. Reynolds, Using category theory to design implicit conversion and generic
operators. In N. Jones, editor, Semantics-Directed Compiler Generation, 211–
258, Berlin; LNCS 94, Springer-Verlag, 1980.

[Rey81] J. Reynolds, The essence of Algol. In de Bakker and van Vliet, editors, Algo-
rithmic Languages, 345–372, North Holland, 1981.

[Rey89a] J. Reynolds, Preliminary design of the programming language Forsythe.
Carnegie Mellon University technical report CMU-CS-88-159, June 1988.

[Rey89b] J. C. Reynolds, Syntactic control of interference, part II. In International Col-
loquium on Automata, Languages, and Programming, 1989.

[Rey91] J. Reynolds, The coherrence of languages with intersection types. In Interna-
tional Conference on Theoretical Aspects of Computer Software, Sendai, Japan,
LNCS, Springer Verlag, September 1991.

[Spi90] M. Spivey, A functional theory of exceptions. Science of Computer Program-
ming, 14(1):25–42, June 1990.

[SRI91] V. Swarup, U. S. Reddy, and E. Ireland, Assignments for applicative languages.
In Conference on Functional Programming Languages and Computer Architec-
ture, Cambridge, Massachusetts; LNCS 523, Springer Verlag, August 1991.

[SS76] G. L. Steele, Jr. and G. Sussman, Lambda, the ultimate imperative. MIT, AI
Memo 353, March 1976.

[Tur90] D. A. Turner, An overview of Miranda. In D. A. Turner, editor, Research Topics
in Functional Programming. Addison Wesley, 1990.

[Wad85] P. Wadler, How to replace failure by a list of successes. Conference on Func-
tional Programming Languages and Computer Architecture, Nancy, France;
LNCS 201, Springer-Verlag, September 1985.

[Wad90] P. Wadler, Comprehending monads. In Conference on Lisp and Functional
Programming, Nice, France; ACM, June 1990.

[Wad91] Is there a use for linear logic? Conference on Partial Evaluation and Semantics-
Based Program Manipulation (PEPM), New Haven, Connecticut; ACM, June
1991.

23

