
On the Expressive Power of Programming Languages

Matthias Felleisen*
Department of Computer Science

Rice University
Houston, TX 77251-1892

Abstract

The literature on programming languages contains an abundance of informal
claims on the relative expressive power of programming languages, but there
is no framework for formalizing such statements nor for deriving interesting
consequences. As a first step in this direction, we develop a formal notion
of expressiveness and investigate its properties. To demonstrate the theory's
closeness to published intuitions on expressiveness, we analyze the expressive
power of several extensions of functional languages. Based on these results,
we believe that our system correctly captures many of the informal ideas on
expressiveness, and that it constitutes a good basis for further research in this
direction.

1 Comparing Programming Languages

The literature on programming languages contains an abundance of informal claims on
the relative expressive power of programming languages and on the expressibility or non-
expressibility of programming constructs with respect to programming languages. Unfor-
tunately, programming language theory does not provide a formal framework for spec-
ifying and verifying such statements. This lack makes it impossible to draw any firm
conclusions from these claims or to use them for an objective comparison of programming
languages.

Landin [10] was the first to propose the development of a formal framework for compar-
ing programming languages. He studied the relationship among programming constructs

*Supported in part by NSF and Darpa

135

and began to classify some as "essential" and some as "syntactic sugar." Others, most
notably Reynolds [17, 18] and Steele and Sussman [19], followed Landin's example. They
informally analyzed the expressiveness of imperative extensions of higher-order functional
languages and initiated a study of "core" languages. The crucial idea behind the sepa-
ration of language features is summarized in the remark of Sussman and Steele [19] that
there are simple, "syntactically local" translations into applicative languages for many
common programming constructs, but that some, notably escape expressions mad assign-
ments, involve complex reformulations of large fractions of programs.

The informal approach of Landin and others suggests that a facility is expressible
if every 'usage instance is replaceable by a behaviorally equivalent instantiation of an
expression schema. The two key concepts in this idea are expression schema and behavioral
equivalence. These are well-known and widely studied concepts in programming language
theory, and are easily adaptable as the basis of a formal definition of expressibility. A
first analysis of this definition shows that it supports many informal judgements in the
progran~ning language literature. We therefore believe that it correctly formalizes the
informal ideas and that it constitutes a basis for further research.

In the following sections, we propose a formal model of expressibility and expres-
siveness, investigate some of its properties, and analyze the expressive powers of several
extensions of functional languages. First, we introduce our formal framework of expres-
siveness based on the notion of expressibility. Second, we study the expressiveness of an
idealized version of Scheme [20] and verify the informal cxpressibility claims of Steele and
Sussman [19] behind the Scheme language design. Finally, we compare our ideas to the
study of definability in mathematical logic and put our work in perspective.

2 A]Formal Theory of Expressiveness

Since Landin's informal ideas about essential and non-essential language features form
the basis of our formal framework of expressibility, we begin our investigation with some
typical and widely accepted examples of "syntactic sugar." Consider a goto-free, Algol-
like language that has a while-loop construct but lacks a repeat-loop. Clearly, few
programmers would consider this a loss since the repeat-construct is roughly equivalent
to the while-construct. More precisely, for all statements s and expressions e

(r epea t s unt i l e) /s expressible as (s; while --e do s).

When an instance of the expressed (left-hand) side is needed, the appropriate instantiation
of the expressing (right-hand) side will perform the same operations. Moreover, a simple
preprocessor could translate a program with repeat-statements into a program with the
equivalent while-programs.

In a dynamically-typed, functional language the let-expression is another prototypical
example of "syntactic sugar." If a functional language has first-class procedures, the
lexical declaration of a variable binding in the form of a let-expression is an abbreviation
of the immediate application of an anonymous procedure to the initial value:

(let x be v in e) is expressible as (apply (p rocedure x e) v).

136

Similarly, functional languages can also realize if-expressions and the truth values through
functional combinators [1:133]. In a lazy setting, selector procedures can express

true as (p rocedure (x y)x) ,

false as (p rocedure (x y) y),

and, based on this, an if-construct as an application of the test expression to the two
branches:

(if tst thn els) is expressible as (apply tst thn els).

Although the let- and if-examples are similar, they also reveal some of the typical
vagueness in informal expressibility claims. For practical purposes, the implementations
of if, true, and false suffice. If a program produces an answer, it is possible to replace the
expressed phrases with the expressing construction without effect on the final result. But,
if the subexpression tst of an if-expression does not evaluate to a boolean value, a built-in
if-construct may signal an error or diverge whereas the expressing phrases may return
a proper value. In short, the expressing phrases may yield results in more situations
than the built-in, expressed constructs. Still, both expressibility statements are widely
accepted claims and deserve consideration.

The essence of simple statements about "syntactic sugar" relationships is a set of
three formal properties. First, the expressing phrase is only constructed with facilities in
a restricted sublanguage. Second, it is constructed without analysis of the subphrases of
the expressed phrase. Third, replacing the instances of an expressed phrase in a program
by the corresponding instances of the expressing phrases has no effect on the behavior of
terminating programs, but may transform a previously diverging program into a converg-
ing one. A formal framework of expressibility must account for these ideas with precise
definitions.

For our purposes, a programming language is a set of syntactic phrases with a se-
mantics. A program is a phrase whose behavior we can observe by submitting it to an
evaluator, which may or may not produce an answer for a given program.

Def ini t ion 2.1. (Programming Language) A programming language/: consists of

• a set of/:-phrases, which is a set of freely generated abstract syntax trees (or terms),
based on a possibly infinite number of function symbols F, F1,. • • with arity a, a l , . . . ;

• a set of/:-programs, which is a non-empty subset of the set of phrases; and

• an operational semantics, which is a partial computable function, evalc, from the
set of/:-programs to an unspecified set of/:-answers:

evalL :/:-programs o ~ /:-answers.

The function symbols, including the 0-ary symbols, are referred to as programming con-
structs or facilities.

t37

N o t e . The set of phrases is (the universe of) a many-sor t ed , freely generated term algebra.
For simplicity, we ignore the many-sortedness of the abstract syntax. Moreover, in our
examples we often use concrete syntax for readability, i

Our prototypical example of a programming language is based on the language A of
the pure A-calculus [1]. In order to compare the expressiveness of call-by-value and call-
by-name procedures later in this section, we extend A with a new constructor, A~, and
rename A to Am. That is, the phrases are generated from a set of variables {x, y, z , . . . }
(0-ary constructors) and three binary constructors: A. : variable x t e r m ~ t e r m (call-
by-value abstraction), A,~ : variable × t e r m ~ t e r m (call-by-name abstraction) and
• : t e r m × t e r m ~ t e r m (juxtaposition):

::= = I I (A.=.e) t (ee)

where e ranges over terms and z over variables. The constructors A. and ~= bind their
variable arguments in their term arguments; if all variables in a A-term are bound, we
say the term is closed. The set of A-programs is the set of closed terms. A-answers are
A-abstractions; we also refer to them as A-va lues and let v range over this set. We adopt
the usual A-calculus conventions about the concrete syntax of A-terms [1].

The operational semantics of A is based on the ~- and ~-reduct ion schemas and the
standard reduction function [1, 16]. The reduction schemas denote relations on the term
language. Their definitions are as follows: I

(A.=.e)e' ---* e[x/eq (e' is arbitrary) (Z)

(A , x . e) v > e[x /v] (v is a value). (ft.)

An evaluation proceeds by reducing the leftmost-outermost occurrences of reducible ex-
pressions (redexes) outside of abstractions until no more such redexes exist. More pre-
cisely, if the tree is a redex, the redex is contracted and the evaluation process starts over
with the new program. Otherwise, if the left part of the application is a call-by-value
abstraction, the search for a redex continues with the right part; if it is not, it concen-
trates on the left part. The evaluation process terminates after producing an answer,
i.e., a.n abstraction. By summarizing the standard reduction process into a function from
A-programs to A-answers, we obtain the operational evaluation function.

A sublanguage is a programming language without certain programming constructs.
The programs in the sublanguage must have the same behavior as in the full language.

Definit][on 2.2. (Sub language) A programming language £: \ {F1, . . . ,F,~} is a sublan-

guage of a language L if

* the Fi 's are constructors of E's phrase language,

lel[x/e2] is el with all free z substituted by e2, possibly with some of the bound variables in el renamed
to avoid name clashes. More formally, for the definition of the operational semantics we consider the
quotient of h under a-equivalence.

138

• the set of g \ {F1,.. . ,F,~}-phrases is the subset of/g-phrases that do not contain
any constructs in {F1, . . . , F,~},

t the set of g \ {F1, . . . , F= }-programs is the subset of g-programs that do not contain
any constructs in {F1, . . . , F,}, and

• the semantics of g \ {F1, . . . , F,~} is a restriction of g 's semantics, i.e., for all g \
{F1,...,F,~}-programs e, evaIc\~F1,...,F.}(e)= evalc(e).

We sometimes refer to g as a language extension of £: \ {F1, . . . , F,}.

Every language is obviously a sublanguage of itself. In our running example, the
sublanguage A,~ is A without)~v-abstractions, A. is A without call-by-name abstractions:

h= = A \ $. ; A. = A \ ;~.

A restriction of the above evaluation process to A.-terms and A~-terms yields call-by-value
and call-by-name semantics, respectively.

Next we can turn to the relationship between expressed and expressing phrases in an "is
expressible as"-relation. The syntactic aspect of the relationship is that the abbreviated
expression is only generated from a restricted set of syntactic constructors, and that
the translations of the subexpressions of the expressed phrase occur as subexpressions of
the expressing phrase. The restriction of a language to a sublanguage takes care of the
former condition; the latter condition is satisfiable by considering parameterized phrases,
i.e., phrases containing meta-variables, and instantiations of such phrases.

Defini t ion 2.3. (Syntactic Abstraction) The set of syntactic abstractions over a pro-
gramming language g is the set of freely generated trees based on g's constructors and
an infinite number of additional 0-ary constructors called meta-variables (~, ~1,...). We
denote syntactic abstractions with M(a~, . . . , as). If M(a~, . . . , a=) is a syntactic abstrac-
tion and e l , . . . ,e= are phrases in g, then the instance M(el , . . . ,e ,) is a phrase in g that
is like M(~I , . . . , ~=) except at occurrences of c~i where it contains the phrase e~:

• if M(~I , . . . , ~) = c~, then M(el , . . . , e,) = ei, and

• if M(a l , . . . , a ,) = F (M I (a l , . . . , a ,) , . . . , M , (a l , . . . , a , ~)) for some F with arity a
then M(e l , . . . , e,) = F(M~(e~,..., e ,) , . . . , Ma(el , . . . , e,)).

Note . Algebraically a syntactic abstraction M(cq, . . . , c~=) is a (sorted) polynomial over
the free term algebra with the variables a l , . . . , a,~. An instantiation of a syntactic ex-
tension is an application of the function to appropriate arguments. In the terminology
of equational algebraic specifications, syntactic abstractions are known as derived opera-
tors [6]. In Lisp-like languages, syntactic abstractions are realized as macros [9]; logical
frameworks know them as notational abbreviations [7]. I

In the framework of our example language A,

=

139

is a syntactic abstraction over A. The expression (A~x.x)y is the instance M(x, x, y).
The semantic aspect of the relationship between expressed and expressing phrases is

that the replacement of the former by the latter in arbitrary programs has no effect on the
program behavior. To capture this idea, we need to formalize an expansion of a program
from a hmguage into a sublanguage according to a set of syntactic abstractions.

Def ini t ion 2.4. (Syntactic Expansion) Let £' = / : \ {FI , . . . , Fn} be a sublanguage of £:.
A syntactic environment p (over/2' for £) is a finite map from the syntactic constructors
F1 , . . . , F,~ to syntactic abstractions. A syntactic expansion [.]p from £: to £ ' relative to
the syntactic environment p maps £-phrases to £'-phrases as follows:

• if F ¢ Dora(p) then IF (e l , . . . , ea)]p = F([el]p , . . . , [%]p)

• if p(F) = M(a~, . . . ,ao) then ~F(eI, . . . , eo)]p = M(Eel~p,..., JelL).

At this point, everything is in place for the definition of a formal notion of expressibility.
A language can express a set of constructs if there are syntactic abstractions that can
replace occurrences of the old constructs without effect on the program's behavior. Given
this, we faust only agree on the behavioral characteristics of programs that we would like
to observe. In order to avoid overly restrictive assumptions about the set of programming
languages, we follow a minimalistic approach and observe the termination behavior of
programs. 2

Def in i t ion 2.5. (Expressibility) Let £ \ {F1, . . . , F,~} be a sublanguage of £ and let £: be
a sublanguage of £' . The programming language £:k {F1, . . . , F,,} can express the syntactic
facilities {F1, . . . , F,~} with respect to £' if for every Fj there is a syntactic abstraction Mj
such that for all/:-programs p,

evatL(p) is defined if and only if eval~(~p~p) is defined

where p = {(Fj, Mj)[1 < j < n}.
£: \ {F1 , . . . , Fn} can weak ly express the syntactic facilities Fj with respect to ~' if

there are syntactic abstractions Mj such that for all L-programs p,

eval£(p) is defined implies evalc([p]o) is defined

where p == {(Fs, Mj) I 1 < j < n}.
The qualifying clause "with respect to" is omitted whenever the language universe

is obvious from the context. If £ \ {F1, . . . , F,} can express F because of the syntactic
abstraction M, we sometimes say that M expresses F when £ \ {F1, . . . , F ,} and £ ' are
understood.

The terminology "weakly expressible" reflects our belief that any differences in behav-
ior should be noted as a failure of complete expressibility. The definition is also consistent
with the :fact that expressibility implies weak expressibility.

2This restrJLction only excludes total programming languages from further consideration. But, by omitting
any references to the characteristics of results, it is possible to consider a broad variety of programming
languages, e.g., languages with or without basic, observable data.

140

Proposition 2.6 I f £ can express F, then £ can weakly express F.

An alternative understanding of the expressibility relation is that the expressing phrase
and the expressed phrase are interchangeable in all programs. This relation between
phrases is widely studied in semantics and is known as operational or observational equiv-
alence [12, 15, 16]. For a formal definition of this relation, we must first establish the
auxiliary notion of a context.

Defini t ion 2.7. (Context) An E-program context for a phrase e is a unary syntactic
abstraction, C(a), such that C(e) is an Z-program.

The syntactic abstraction

C0(a) = (A,xy.a)(A,x.x)f~, where ~ = (Anx.xx)(A,x.xx)

is a program context for all expressions whose free variables are among x and y.
In order to establish a relation to the above definition of expressibility, our definition

of operational equivalence only compares the termination behavior of programs.

Defini t ion 2.8. (Operational Equivalence) L e t / : be a programming language and let
evalc be its operational semantics. The/:- terms el and e2 are operationally equivalent,
ex ~c e2, if there are/:-program contexts for both el and e2, and if for all such contexts
C(a), eval£ is defined on C(e2) if and only if it is defined on C(el).

With the above program context Co, it is possible, for example, to differentiate the
phrases z and y. Since f~ diverges, the program Co(x) = (A~xy.x)(),nx.x)f~ terminates
whereas Co(y) = (A~xy.y)(A,x.x)fl diverges.

Based on the idea that an expressing phrase must be operationally equiwlent to an
expressed phrase, we can now establish our first major meta-theorem on expressibility: If
a programming construct fundamentally alters the operational equivalence relation of the
extended language, it is impossible to express the additional construct in the restricted
sublanguage.

T h e o r e m 2.9 Let £o = £1 \ {F1, . . . ,F~} be a sublanguage of£1, and let £1 be a sub-
language of £. Let ~-o and ~1 be the operational equivalence relations, respectively.

(i) I f the operational equivalence relation of £1 does not conservatively extend the op-
erational equivalence relation of £o, i.e., ~o ~ ~-1, then £o cannot express the
facilities F1 , . . . , F,~ with respect to £.

(ii) The converse of (i) does not hold. That is, there are cases where £o cannot express
a facility F even though the operational equivalence relation of £i is a conservative
extension of the operational equivalence relation Of £o, i.e. ~-o C_ "~1.

Proof . (i) The non-conservativeness of the extension implies that there are two terms
e and d in £0 such that e -~0 e ~ but e ~I e'. Given the theorem's assumption, the
operational equivalence relation for £1 can only distinguish e from e' through a context

141

built with some F E {F1 , . . . , F=}. To prove this auxiliary claim, assume the contrary.
Then there is a program context C(a) for e and e' over/:1 such that C(a) does not
contain any constructors in {F I , . . . , Fn}, and such that (without loss of generality) evall
produces an answer for C(e) but not for C(e'). Since neither e nor e' nor C contain
any constructor in {F1 , . . . , Fn}, C(e) and C(e') are £o-programs. By the definition of
a sublanguage, evalo(C(e)) is defined because eval~(C(e)) is defined and evalo(C(e')) is
undefined because eval~(C(e')) is undefined. Consequently, evalo is defined on C(e) but
not on C(e'), which contradicts the assumption that e n0 e'. We have thus proved the
auxiliary ,claim.

Now, assume contrary to the claim in the theorem that £0 can express F1 , . . . , F=.
Hence, there is a syntactic environment p that maps each Fi to some syntactic abstraction
Mi. Let C(a) be a context over £1 that can differentiate the two terms e and e' based
on some F , . . . E {FI , . . . ,F~}. Let us say that evall produces an answer for C(e) but
not for C(e'). By the definition of expressibility, C(e) and C(e') have counterparts in/:o,
p = [C(e)]p and/4 = [C(e')]p, that have the same termination behavior:

eval~(p) is defined because evall(C(e))is defined

and
evall(p') is undefined because evall(C(e'))is undefined.

By construction, the programs p and p' can only differ in a finite number of occurrences of
e and e', respectively. From this fact and the assumption that e no e', we can immediately
derive that p and p' have the same termination behavior in £0, i.e.,

evalo(p) is defined if and only if evalo(p') is defined.

But this implies that

evall(p) is defined if and only if evall(p') is defined

because £o is a sublanguage of £1. Since this conclusion contradicts the above fact that
p converges and pr diverges, we have proved our claim.

(ii) A simple example can be constructed by merging two disjoint languages such
that a program in the combined language is either in one or the other language. The
extension of the operational equivalence relation is conservative and the features in the
added language are in general not expressible.

One particular example of this kind is the simply typed A-calculus, whose types are
either base types or arrow types. Because of the type system, it is impossible to define
the typical cons, car, and cdr functions for pairs of elements of arbitrary types. Hence
this simply-typed language cannot express these pairing functions. On the other hand,
also due to the type system of the language, the new functions cannot be bound to free
variables iin phrases of the subtanguage, which implies that the pairing functions cannot
be used to distinguish phrases in the simply typed language. It follows that pairing type
constructors and functions increase the expressive power without destroying operational
equivalences of the underlying language, g

142

Based on this first meta-theorem on expressibility, we can now easily show that the
sublanguage A~ is not strong enough to express call-by-name abstraction, and that AN is
not strong enough to express call-by-value abstraction. However, A,~ can weak ly express
A~ since call-by-name abstractions are applicable to both proper values and undefined
expressions.

P r o p o s i t i o n 2.10 A extends both A, and AN.

(i) A, cannot express AN with respect to A.

(ii) AN cannot express Av with respect to A.

(iii) An can weak ly express Av with respect to A.

Proof . (i) Consider the expressions AJ . f (A ,x . x)£ and A.fA2 where fl is the call-by-
value variant of our prototypical infinite loop. In the pure call-by-value setting, the two
are operationally equivalent

AJ. f (A~x.x)a ~A~ AJ .a .

Both abstractions are values; upon application to an arbitrary value, both of them diverge.
But, in the extended language A, we can differentiate the two with the context

C(~) = a (~ x . (~ y . x)) .

The context applies a phrase to a function that returns the value of the first argument
after absorbing the second argument without evaluating it. Hence, C(A,f.f()~x.x)~2)
terminates while C(AJ . f l) diverges, and the extension of A, to A is non-conservative
with respect to operational equivalence. By Theorem 2.9, AN is not expressible.

(ii) There are two proofs for part (ii). The first is another application of the preceding
meta-theorem and is derived from a closely related theorem by Ong [13: Thm. 4.1.1]. 3 The
second--related to but discovered independently of the first--provides some operational
understanding for the reasons why AN cannot express A.-abstractions. We only present
the second one.

A simple consequence of the operational semantics for As is that a subterm e of a
program C(e) can only affect the evaluation if it occurs in a leftmost-outermost position
in some term of the evaluation sequence, i.e.,

C(e) ,* eql. . , an,

for some arbitrary ql , . . . ,q~, n _> 0 [15]. When this happens, we say the term becomes
active.

Suppose a syntactic abstraction S(x, el) over An could express A~x.el. To show that
this is impossible, we prove that S(x, el)e~ cannot be operationally equivalent to (Avx.el)e2

aGordon Plotkin pointed out Abramsky's and Ong's work on the lazy A-calculus, which provided the
ideas for the first proof and corrected a mistake in an early draft of this report.

143

for arbitrary el and e2. Clearly, S(x, el) must be a value (or must reduce to a value). Let
A~y.p be this value. It follows that

S(x, el)e2 ~ * (~y.p)e2 , p[y/e~].

Since S is defined without knowledge of el and e2, the evaluation of p[y/e2] proceeds
independently of e2 until e2 becomes active. Consequently, we must distinguish two
cases. First, the evaluation of p[y/e2] may never activate e2. This is impossible because
e2 in the call-by-value program is evaluated and can thus cause divergence. Second, the
evaluation of plY~e2] activates e2 for a first time, that is,

p[y/e2] ~* e2ql. . , qn.

Since the evaluation was thus far independent of e~, e2 is arbitrary and must hold for an
arbitrary ,choice. So, let

e2 = Y K = (~,~f.(~,~x.f(xx))()~,~x.f(xx)))(~,~xy.x).

But then the reduction sequence for the expression S(x~ el)e2 ends in

YKql • • • q~ ~+ ~ J . Y K ,

which is independent of whether x is free in el or not. If x is not free in el, however, the
prograxn (~.x.el)(YK) reduces to the evaluation of el:

(A.x.el)(YK) " (Aox.el)(A~d.(YK)) , el.

Substituting the diverging term f~ for el leads to the desired contradiction. Since there
are no other cases, this proves the second claim.

(iii) Clearly~ A~x.e operationally approximates A,~x.e and, hence, M = ~ a l . a z can
weakly express A, . ,

Proposition 2.10 provides two examples of pairs of universal programming languages
that we cem differentiate according to our expressiveness criterion. The third part of this
proposition also shows that the above meta-theorem on expressibility does not carry over
to weak expressibility. Even in the case of a language extension that is non-conservative
with respect to the operational equivalence or approximation relation, the restricted lan-
guage may already be able to express the new facilities in a weak sense. Call-by-value
procedures and A~ provide the prototypical example.

T h e o r e m 2.9 (eont 'd) Let £o, £1, ~-o and ~-~ be as above.

(iii) Part (i) does not hold for weak expressibility. That is, there are cases where £o
can weakly express F1, . . . , F,~ relative to ~1 even though the extended operational
approximation relation does not subsume the restricted one, i.e., ~-o ~ ~-1.

The definition of an expressibility relationship also leads to a natural measure of
expressive power between programming languages. A programming language is less ex-
pressive than another if the latter can express all the facilities the former can express in
a given language universe.

144

Def in i t i on 2.11. (Expressiveness) Let Z:o and £'1 be sublanguages of £:. The language
£'o is less expressive than £1 with respect to £ if £1 can express all sets of facilities with
respect t o / : that £0 can express with respect to Z:.

Expressiveness is a pre-order on sublanguages in a given language framework.

T h e o r e m 2.12 The less-expressive-than relation is a pre-order in its first two arguments.

(i) £o is less expressive than f-.o with respect to to £'.

(ii) I f £.o is less expressive than £'1 with respect to £" and £1 is less expressive than £'2
with respect to £', then £'o is less expressive than £.2 with respect to £'.

Based on the definitions of expressibility and expressiveness, we can now analyze the
expressiveness hierarchy in more practical languages. In the next section, we study an
idealized version of Scheme as a concrete example of this kind, thus providing further
insight into our general framework.

Syntax

Semantics

: : = 0 1 1 1 - 1 1 2 1 - 2 1 . . . (n u m e r a l s)

I zero? [add 1 I subl I + [- (numeric functions)
I (l ambda (x . . .) e) (abstractions)

e ::= v (values)
I z (variables)
[(e e . . .) (applications)

(f a . . .)
((lambda (Xl. . .xn) e) Vl . . .vn)

, 6(f ,a , . . .) for zero?,addl, . . .

, e [x l / v l l . . . [x , / v ,]

Constant Interpretation

6(addl,n) = n + l 6(+,n,m) = n + m
~(subl ,n) = n - 1 ~ (- , n , m) = n - m

6(zero?,O) = (l ambda (x y) x)
6(zero?,n) = (l ambda (x y) y)

for n # 0

FIGURE 1: Pure Scheme

3 T h e S t r u c t u r e o f Idealized Scheme

Pure Scheme [3, 4, 5] is an extension of the simple call-by-vaiue language A~ that includes
multi-ary procedures and algebraic constants. There are basic constants and functional
constants; the latter operate on constants and closed abstractions. We assume that the
semantics of constants is given through an interpretation 6 from functional constants

145

and closed[values to closed values. Typically, the constants include integers, characters,
booleans, and some appropriate functions. Initially, we only include integers and a min-
imal set of functions. Figure 1 contains the complete specification of Pure Scheme. The
semantics is given via reduction rules, which are applied in the standard reduction or-
der defined in the preceding section; the extended evaluation function is undefined for
a program when the evaluation of the program gets stuck because of the application of
a constant symbol to a),-expression, the application of a numeral to a value, or the
application of a constant function to a value for which ~ is undefined.

The main characteristic of Idealized Scheme is the extension of the functional core
language Pure Scheme with imperative facilities and type predicates:

• predicate constants for determining the type of a value,

• branching expressions for the local manipulation of control,

• control expressions for the non-local manipulation of control, and

• assignment statements for the manipulation of state variables.

The extensions are motivated by the belief that imperative facilities and type predicates
add to the expressive power of the language [19, 20]. In this section, we demonstrate how
to formulate these beliefs in our formal expressiveness framework and how to relate the
extensions to the core language.

The addition of type predicates to Pure Scheme is simple. For extending Pure Scheme
with a predicate like int?, it suffices to extend the interpretation function 6 with the
clauses

6(int?,n) = (lambda (x y) x)
6(int?, (l am bda (x . . .) e)) = (l amb d a (x y) y)

We refer 1;o the extended language as PS(int?). With int?, programs in the extended
language can now effectively test the type of a value, which is impossible in Pure Scheme.

T h e o r e m 3.1 Pure Scheme cannot express int? with respect to PS(int?).

P r o o f Sketch. The claim is another consequence of Theorem 2.9. In Pure Scheme, we
have:

(((p 1) (l a m b d a 0
(((p (l a m bda 0 [2))

(l a m b d a 0 2)
(l a m b d a 0

(((p 2)
(l a m b d a 0 1)
(l a m b d a 0 fl)))))))

(l a m b d a 0 [2)))

e ~
- - p s

(((p 1) (l amb d a 0
(((p (l a m b d a 0 D))

(l amb d a 0 2)
(l a m b d a 0 [2))))

(l a m b d a 0 [2)))

146

In the extended language, however, p could be bound to the predicate int?, which would
distinguish the two expressions operationally..

The programming language world knows two types of local branching statements for
languages like Pure Scheme: the truth-value based if-construct and the Lisp-style if-
construct that. distinguishes one special value from all others. The semantics of the former
relies on the presence of two distinct values: true and false, or 0 and 1. The following two
reduction rules characterize the behavior of truth-value based if:

(if 0 e~ el) ,~ et (if.true)

(if 1 e, el) , ey. (if.false)

If the test value in an if-expression is neither 0 nor 1, the evaluation of the program is
undefined. We refer to the extended language as PS(if).

Clearly, Pure Scheme can express such a simple if.

T h e o r e m 3.2 Pure Scheme can express truth-value based if with respect to PS(if).

P r o o f Sketch. Consider the syntactic abstraction:

(i f e e2) = (((zeroe e)
(l ambda 0 e,)

(l ambda 0 (((zero? (sub1 e)) (l ambda 0 e2) (l ambda 0 •))))))

It is easy to show that this abstraction is operationally equivalent to if. ,
Note . (i) The trick of freezing the evaluation of expressions through vacuous lambda-
abstraction was already known to Landin and Burge [10], but, clearly, it is impossible to
express typed if without 0-ary abstraction in a call-by-value framework.

(ii) The preceding theorem crucially depends on the specification that values other
than 0 and 1 in the test position of the if construct render the program undefined. ,

The Lisp-style if assumes that there is one distinct value for false, in Lisp usually
called nil, and all other values represent true. With 0 serving as nil, the reduction rules
differ accordingly from (if.true) and (if.false):

(if v e t el) ~ et for v ¢ 0 (if.v)

(if 0 e~ el) , e I. (if.nil)

T h e o r e m 3.2 (eont 'd) Pure Scheme cannot express if with respect to PS(Lisp- i f) .

P r o o f Sketch. Obviously Lisp-style if is equivalent--in our formal sense--to the addi-
tion of a to ta l functional constant null? for distinguishing 0 from all other values. By
Theorem 3.1 it follows that Lisp-if is not expressible. ,

A more interesting question about expressiveness arises in the context of non-local
control abstractions. Idealized Scheme has the operation call-with-current-continuation,
abbreviated call /co, which applies its sub-expression to an abstraction of the current
control state. In analogy to denotational semantics, the Scheme-terminology for this ab-
straction is continuation. Figure 2 specifies the syntax and a simple reduction semantics of
PS(cal l /ec) , an extended version of Pure Scheme with this control facility. The reduction
semantics forms the basis of a simple equational calculus for eall /ce and continuations,
and permits a simple, algebra-like reasoning in the presence of control operations [4, 5].

147

Additional Syntax

e :: I (eall/ee e) (continuation captures)

Evaluation Contexts

E ::= a I (v E) I (E e)

Additional Semantics

E[(call/cc e)]

(call/cc (lambda (k) E[(k e)]))
(call/cc (lambda (k) (call/cc e)))

(call/cc (lambda (k) e))

(call/cc (lambda .(k)
E[e (lambda (x) (k E[x]))]))

--~ (call/cc (lambda (k) e))
----+ (call/ec (lambda (k) (e k)))
---+ e, i f k C e

FIGURE 2: Pure Scheme with control

T h e o r e m 3.3 Pure Scheme cannot express cal l /cc relative to PS(call/cc).

P r o o f Sketch. The theorem is a consequence of Theorem 2.9, i.e., the addition of cal l /cc
invalidates operational equivalences in the extended language. A typical example 4 is the
operational equivalence

(l ambda (f) ((f 0) ~)) -~p, (l ambda (f) f~).

As pointed out in the proof of Proposition 2.10(i), these two procedures are equivalent in
a functional setting because both diverge when applied to a value. When we add cal l /cc,
however, we can construct the context (call /cc a), which can differentiate between the two
expressions. Whereas the composition of the first expression with this context evaluates
to 0:

(cal l /cc (l ambda (f) ((f 0) f~))) = (call /cc (l ambda (f) 0)) = 0

the second[expression diverges in the same context:

(call/cc (l ambda (f) f/)) = fL t

The final addition to Pure Scheme is the set!-construct, Scheme's form of assignment
statement. Like in a traditional Algol-like programming language, the set!-expression
destructively alters a binding of an identifier to a value. A simple reduction semantics
for PS(setl), Pure Scheme with set! and le t rec (for recursive declarations of assignable
variables with initial values), is given in Figure 3. Again, this semantics is the basis for
an equational calculus for reasoning about operational equivalences in PS(set!) [3, 4].

4This example is a folklore example in the theoretical "continuation" community, but it was also used by
Meyer and Riecke to argue the "unreasonableness" of continuations [11].

148

Additional Syntax

e

Evaluation Contexts

:: I (set! • e)
I (l e t ree (Ix v] . . .) e)

(assignments)
(recursive definitions)

E : : = a l (v E) l (E e) l (set! x E)

Additional Semantics

((lambda (x. . .) e) v . . .)
(letrec (. . . [x v]...) e)

(letrec (. . . Ix v]...) E[x])
(letrec (. . . [x u]. . .) E[set! x v])

(letrec ([x v]...) E[(letree ([y u].. .) e)])

---. (letrec ([x v]...) e), instead of ft.
--* (letrec (...[x v]...) e[x/v])

if x is not assignable in e
and doesn't occur in the defined values

---+ (letrec (...Ix v]...) E[v])
---. (letrec (...[x v]...) E[v])
---+ (letree (Ix v].. .[y u]. . .) E[e])

FIGURE 3: Pure Scheme with state

T h e o r e m 3.4 Pure Scheme cannot express setI with respect to PS(set!).

P r o o f Sketch. Consider the expression

((lambda (d) (f 0)) (f 0)),

which contains the same subexpression twice. Clearly, in a functional language like Pure
Scheme the two subexpressions (f 0) return the same value~ if any, and, given that the
value of the first subexpression is discarded~ the expression is operationally equivalent to

(f 0).

In the extended language, this is no longer true. Consider the context

C(a) = (le t rec (f (l ambda (x) (set! f (l amb d a (z) f~)))) a),

which declares a procedure f . Upon the first application, the procedure modifies the
declaration so that a second invocation leads to divergence. Consequently~ an expression
with a single use of the function converges, but an expression with two uses diverges. The
verification of these claims ~rith the reduction semantics is straightforward. =

At this point we do not know whether the above results hold in the framework of weak
expressiveness. We conjecture that they carry over but lack a proof of this statement.

149

4 Re la t ed Work

Kleene's study of definitional extensions in mathematical logic [8, 21] is the most closely
related work. A formal system S is a definitional extension of a formal system S' if,
roughly, the (provable) formulas of S can be translated into (provable) formulas of S ' with
a map that is homomorphic with respect to the logical operations and the constructors in
S'. This is clearly analogous to our notion of expressibility when we replace provability
with termination. Thus, the concept of an expressible programming construct directly
corresponds to Kleene's notion of eliminable symbols and postulates [8:§74; 21:I.2].

Williams [22] considers a whole spectrum of formalization techniques for semantic
conventions in formal systems. His work starts with ideas of applicative and definitional
extensions of logics but also considers techniques that are more relevant in computational
settings, e.g. compilation and interpretation. The goal of Williams's research is a compar-
ison of the formalization techniques and not a study of the expressiveness of programming
languages. Some of his results may be relevant for future extensions of our work.

Comparative schematology was an early but quite different attempt at measuring the
relative expressive power of programming languages: see Chandra and Manna's report [2]
for an example. Schematology studies programming languages with a fixed operational
semantics for a simple set of control constructs, e.g. while-loop programs or recursion
equations, and with uninterpreted constant and function symbols. In the absence of
arithmetic, it is possible to decide certain questions about such uninterpreted program
schemas. :Moreover, it makes sense to compare the set of functions that are computable
when data structures like stacks, arrays, queues, or general equality are added. In the
presence of arithmetic, the approach can no longer compare the expressive power of pro-
gramming languages since everything can be encoded. Also, given that many modern
languages contain higher-order (procedural) data for control structure purposes, we find
this approach unsuited for the comparison of realistic languages.

A secondary piece of related work is the study of the full abstraction property of
mathematical models [13, 15] and the representability of functions in A-calculi [1]. In
many cases, the natural denotational model of a programming language contains too many
elements so that operationally equivalent phrases have different mathematical meanings.
Since it is relatively easy to reverse-engineer a programming language from a model, the
equality relation of models without the full abstraction property directly corresponds
to the operational equivalence of a language extension. As a consequence, such models
naturally lead to the discovery of non-expressible programming constructs. Still, the study
of full abslbraction does not provide true insight into the expressive power of languages.
On one hand, the discovery of new facilities directly depends on the choice of model.
For example, whereas a direct model of An requires a facility for exploiting deterministic
parallelism, a continuation model leads to operations on the continuation of an expression
(in addition to parallel constructs). On the other hand, by Theorem 2.9 we also know that
a non-conservative extc,lsion of the operational equivalence relation is only a su~cient
but not a :necessary condition for the non-expressibility of a programming construct. In
short, research on full abstraction is a valuable contribution to--see Proposition 2.10--but
not a replacement of the study of expressiveness.

150

5 Towards a Formal Programming Language Design Space

In the preceding sections we have developed a formal framework for comparing the expres-
sive power of programming languages. An analysis of its properties and an application of
the framework to an idealized version of Scheme have demonstrated how close the formal
notions are to the intuitive ideas in the literature. In particular, we have shown that an
increase in expressive power may destroy semantic properties of the core language (The-
orem 2.9), but we also conjecture that more expressive languages make programs more
concise.

The current framework is only a first step towards a formal programming language
design space. The crucial idea behind our development is the restriction of the translation
process from an extended language to a smaller language. We believe that there may be
an entire spectrum of feasible restrictions that yield interesting, alternative notions of
expressiveness, and that these alternatives deserve exploration. Moreover, we have not
yet tackled the problem of deriving properties from expressiveness claims but expect to
do so in the future. In the long run, we hope that some theory of language expressiveness
develops into a formal theory of the programming language design space.

Acknowledgement. Dan Friedman directed my attention to the idea of expressiveness by
insisting that an understanding of new programming constructs in terms of procedures or macro
implementations is superior to an implementation based on interpreters. Conversations with
Bruce Duba and Mitchell Wand clarified my understanding of the problem. Bob Harper pointed
out the relationship to logic, which ultimately led to the current formalization. Hans Boehm,
Robert Cartwright, Dan Friedman, Robert Hieb, John Lamping, and Mitchell Wand suggested
many improvements in the presentation of the material. Finally, comments by members of the
POPL'88 committee, and by the anonymous referees of ESOP'90 pointed out weaknesses in
previous drafts.

6 References

1. BARENDREGT, H.P. The Lambda Calculus: Its Syntax and Semantics. Revised
edition. Studies in Logic and the Foundations of Mathematics 103. North-Holland,
Amsterdam, 1984.

2. CHANDRA, A.K. AND Z. MANNA. The power of programming features. Journal of
Computer Languages (Pergamon Press) 1, 1975, 219-232.

3. FELLEISEN, M. AND D.P. FRIEDMAN. A syntactic theory of sequential state.
Theor. Comput. Sci. 69(3), 1989, 243-287. Preliminary version in: Proc. 14th
ACM Symposium on Principles of Programming Languages, 1987, 314-325.

4. FELLEISEN, M. AND R. HIEB. The revised report on the syntactic theories of
sequential control and state. Technical Report 100, Rice University, June 1989.

5. FELLEISEN, M., D.P. FRIEDMAN, E. KOHLBECKER, AND B. DUBA. A syntactic
theory of sequential control. Theor. Comput. Sci. 52(3), 1987, 205-237. Preliminary
version in: Proc. Symposium on Logic in Computer Science, 1986, 131-141.

151

6. GOGUEN, J., J. THATCHER, AND E. WAGNER. An initial algebra approach to
the specification, correctness, and implementation of abstract data types. In Current
Trends in Programming Methodology IV, edited by R. Yeh. Prentice-Hall, Englewood
Cliffs, New Jersey, 1979, 80-149.

7. GRIFFIN, T. NotationM definition--A formal account. In Proc. Symposium on Logic
in Computer Science, 1988, 372-383.

8. KLEENE, S. C. Introduction to Metamathematics, Van Nostrand, New York, 1952.

9. KOHLBECKER, E. Syntactic Extensions in the Programming Language Lisp. Ph.D.
dissertation, Indiana University, 1986.

10. LANDIN, P.J. The next 700 programming languages. Commun. ACM 9(3), 1966,
157-166.

11. MEYER, A.R. AND J.R. RIECKE. Continuations may be unreasonable. In Proc.
1988 Conference on Lisp and Functional Programming, 1988, 63-71.

12. MORRIS, J.H. Lambda-Calculus Models of Programming Languages. Ph.D. disserta-
tion, MIT, 1968.

13. ONG, L C.-H. Fully abstract models of the lazy lambda-calculus. In Proc. 29th
Symposium on Foundation of Computer Science, 1988, 368-376.

14. PATERSON, M.S. AND C.E. HEWITT. Comparative schematology. In Conf. Rec.
ACM Conference on Concurrent Systems and Parallel Computation, 1970, 119-127.

15. PLOTKIN, G.D. LCF considered as a programming language. Theor. Comput. Sci.
5, 1977, 223-255.

16. PLOTKIN, G.D. Call-by-name, call-by-value, and the A-calculus. Theor. Comput.
Sci. 1, 1975, 125-159.

17. REYNOLDS, J.C. GEDANKEN--A simple typeless language based on the principle
of completeness and the reference concept. Commun. ACM 13(5), 1970, 308-319.

18. REYNOLDS, J.C. The essence of Algol. In Algorithmic Languages, edited by de
Bakker and van Vliet. North-Holland, Amsterdam, 1981, 345-372.

19. STEELE, G.L., JR. AND G.J. SUSSMAN. Lambda: The ultimate imperative. Memo
353, MIT AI Lab, 1976.

20. SUSSMAN, G.J. AND G.L. STEELE JR. Scheme: An interpreter for extended lambda
calculus. Memo 349, MIT AI Lab, 1975.

21. TROELSTRA, A. S. Metamathematical Investigation of Intuitionistic Arithmetic and
Analysis. Lecture Notes in Mathematics 344. Springer-Verlag, Berlin, 1973.

22. WILLIAMS, J.G. On the formalization of semantic conventions. Draft version:
September 1988. To appear in Journal of Symbolic logic, 1990.

