
(A brief and incomplete)

Haskell Refresher



GHC(i)

• GHC is the Haskell compiler we will be using

• GHCi is a interactive/REPL interface to GHC

• Special GHCi commands:
• :r – Reloads/recompiles your code

• :t <expr> - prints the type of an expression



Function Syntax

fma :: Int -> Int -> Int -> Int
fma x y z = x * y + z

• :: is the type ascription operator
• Specifying a type is optional, but recommended

• Function arguments are separated by only a space 
in both the declaration and when called

• Functions can also be written as lambdas:             
(\x y z -> x * y + z)

• The exact rules for lambda syntax are complex, so you 
probably need parens when writing one



Function Currying

• Functions calls curry:
• mod :: Int -> Int -> Int

• (mod 10) :: Int -> Int

• (mod 10 10) :: Int

• Another term for currying is partial application

• Basically, when a function is called only some of its 
arguments, a new function is created that 
automatically calls the original with the given 
arguments plus whatever is passed to the “partial”



Polymorphic functions

• id :: a -> a

• Lower case type names in a functions type are 
implicitly generic type variables
• Think  T id<T>(T t) { … } in Java



Lists

• List literal syntax: [1, 2, 3]

• List prepending: 1 : xs

• List concatenating: xs ++ ys

• Recursively iterating a list:

sum :: [Int] -> Int
sum (x:xs) = x + sum xs
sum [] = 0



Functions over lists

• map :: (a -> b) -> [a] -> [b]
• Applies a function to each element of a list and returns a 

list containing the results of those function calls

• filter :: (a -> Bool) -> [a] -> [a]

• foldl :: (b -> a -> b) -> b -> [a] -> b
foldr :: (a -> b -> b) -> b -> [a] -> b
• Builds a value by applying a function with an 

accumulator value over a list. Can be used like a for-each 
loop in imperative languages.



Functions over lists

foldr is similar to the following imperative code:

fn foldr<A, T>(f: Fn(T, A) -> A, accum: A, ts: 
[T]) -> A {

for i in ts {
accum = f(i, accum);

}
return accum;

}



Bindings

• let - Prefix
someFunc x y z = let someValue = x + y

in z * someValue

• where – Postfix
someFunc x y z = z * helper y

where helper n = (x + 1) * n

• Note: Bindings are NOT variables; they’re 
immutable



Tuples

• Tuples are a way of grouping values together

• (10, “Text”) :: (Int, String)

• zip :: [a] -> [b] -> [(a, b)]

• The zip function builds a list of tuples from two lists



Resources

• Haskell’s Prelude – Documentation for the 
functions and data types that are imported by 
default

• Hoogle – Search engine for Haskell functions. 
Accepts either names or function types

https://hackage.haskell.org/package/base/docs/Prelude.html
https://www.haskell.org/hoogle/

