
Day 7.

1. Functions

Our next new language feature is functions. The good news is, we’ve already built up much of the
machinery we’ll need when talking about local variables.

We’ll start with the terms of our language:

X 3 x

V 3 v ::= z | λx .t

E 3 t ::= z | t1 � t2 | x | λx .t | t1 t2

We let � stand in for the usual collection of binary arithmetic operations; they’re not going to
contribute a great deal from this point in the course onwards, so we’ll rarely pay them much
attention. We have two new term forms: function abstractions λx .t and function applications t1 t2.
Functions themselves are also values, so we have a new value form λx .t .

� Abstractions extend as far to the right as possible. The term λx .x y is interpreted as λx .(x y),
not as (λx .x) y .

� Application binds as tightly as possible. The term fx + y is interpreted as (f x) + y , not as
f (x + y).

� Application associates to the left. The term f x y is interpreted as (f x) y), not as f (x y).
� We don’t need let any more: the term let x = t1 in t2 is equivalent to (λx .t2) t1. Neverthe-

less, for ease of reading, we’ll continue to write let on occasion.

We can define substitution for our new language:

z [t/x] = z

(t1 � t2)[t/x] = t1[t/x]� t2[t/x]

(t1 t2)[t/x] = t1[t/x] t2[t/x]

y [t/x] =

{
t if x = y

y otherwise

(λy .t1)[t/x] =

{
λy .t1 if x = y

λy .t1[t/x] otherwise

Observe that our old rule for substitution on let falls out of the new rule and the encoding for let
given above.

Similarly, we can define evaluation:

z ⇓ z

t1 ⇓ v2 t2 ⇓ v2

t1 � t2 ⇓ v1 � v2 λx .t ⇓ λx .t

t1 ⇓cbv λx .t t2 ⇓cbv w t [w/x] ⇓cbv v

t1 t2 ⇓cbv v

Aside. In class, I also discussed a version of this rule that attempted to separate out the evaluation
of t1 and t2 from the substitution itself. The goal was to highlight the computational power of the
evaluation rule, not just its administrative details. However, I don’t think that actually works very

17

7.

well in the evaluation framework we’re using in this course, so I’m going to ignore it going forward
and only use the version of evaluation given here.

Let’s consider some simple derivations:

λx .x + x ⇓ λx .x + x

4 ⇓ 4 3 ⇓ 3

4 + 3 ⇓ 7

7 ⇓ 7 7 ⇓ 7

(a + a)[7/x] ⇓ 14

(λa.a + a) (4 + 3) ⇓cbv 14

λa.3 ⇓ λa.3

4 ⇓ 4 3 ⇓ 3

4 + 3 ⇓ 7 3[7/a] ⇓ 3

(λa.3) (4 + 3) ⇓cbv 3

2. Currying

So far, we only have single argument functions, and the first hypothesis of our evaluation derivations
has always been a constant reduction. We can represent multiple argument functions using nested
single argument functions. For example:

λa.λb.a ⇓ λa.λb.a 3 ⇓ 3 (λb.a)[3/a] ⇓ λb.3

(λa.λb.x) 3 ⇓ λb.3 2 ⇓ 2 3[2/b] ⇓ 3

(λa.λb.a) 3 2 ⇓cbv 3

� Remember grouping of function application: (λa.λb.a) 3 2 should be read as ((λa.(λb.a)) 3) 2.
� History: named after Haskell B. Curry... except originally introduced 40 years earlier by

Moses Shönfinkel. Somehow the alternate name Shönfinkelization never caught on.

3. Non-termination

Our language to this point seems quite simple—what does function abstraction and application
really buy you? Here’s a simple example: what’s the result of evaluating the following term:
(λa.a a) (λa.a a). After the first substitution (a a)[λa.a a/a] we get (λa.a a) (λa.a a) again... and
so forth. So our little language is sufficient to represent non-termination at least.

In fact, the Church-Turing Thesis states that (modulo some philosophical wibbling) any compu-
tation representable using Turing machines is representable using just variables, abstractions, and
applications, and vice versa! These representations may not be entirely intuitive at first, but they
provide a powerful, compositional basis for thinking about programming (functional and otherwise).
I discuss this more in EECS 762.

That being said, the simple type systems we develop in this course will restrict the λ-calculus such
that many of those encoding will be untypable for us. This means that we’ll continue to study new
ideas as new language features, rarely as being encoded in our existing language. This isn’t actually
as much of a weakness as it sounds: it’ll make it easier to draw connections between λ-calculus and
other areas of logic, and can motivate/explain the encodings.

18

4. Call by Name

4. Call by Name

Call-by-name evaluation again switches the order of substitution and evaluation:

t1 ⇓cbn λx .t t [t2/x] ⇓cbn v

t1 t2 ⇓cbn v

As we expect, call by name reduction means that unused function arguments don’t get evaluated:

λa.3 ⇓ λa.3 3[(λb.b b) (λb.b b)/a] ⇓ 3

(λa.3) ((λb.b b) (λb.b b)) ⇓cbn 3

19

