
Day 14.

1. Type and Effect Systems

Let’s consider a language with state and exceptions. (Exact semantics unimportant—we’ll do with
an intuitive semantics for now.)

e ::= z | e � e | x | λx .e | e e | get | put e | throw e | try e catch e

Now, we want to design a type system—that is, a static approximation of its (intuitive) dynamic
semantics—for this language.

� Initial intuition: what does Γ ` t : T1 → T2 mean? It means that t defines a term that, given
a T1 shaped argument, produces a T2 shaped result. That is, it approximates the observable
behavior of t .

� Just types sufficient for pure functional programming: intuitively, nothing but the free vari-
ables of a term (i.e., Γ) determine the meaning of the term.

� Insufficient for impure functional programming... but why would we care?
– Correctness: can we do two things in parallel?
– Compiler transformations: can we combine subexpressions? Omit dead code? Etc.

Goal: a type and effect system which characterizes both what a term produces and how it produces
it.

T 3 t ::= Int | t → t

F 3 f ::= get | put | throw

Our typing relation will now be a 4-place relation, associating a term and its context with both a
type (t ∈ T) and a set of effects (F ⊆ F).

· ` · : · & · ⊆ (X ⇀ T)× E × T × P(F)

Let’s try to write some typing rules.

We’ll start with integers.

Γ ` z : Int & ∅
Γ ` e1 : Int & F1 Γ ` e2 : Int & F2

Γ ` e1 � e2 : Int & F1 ∪ F2

� Integer constants “obviously” have no effect.
� Binary operations have as many effects as their operands do... for example, get+1 must have

the effects that get does, but it doesn’t add any more effects of its own.

Now let’s look at some side-effecting operations:

Γ ` get : Int & {get}
Γ ` e : Int & F

Γ ` put e : Int & F ∪ {put}

35

14.

� We’re making a simplifying assumption here: that the state is always an integer. We’ll do
the same for throw/catch. This isn’t necessary, but it is a significant simplification at this
point—otherwise, we would have to track changes in the type of the state through a program.

� get has a side effect—it reads the state—so we reflect that in its effects.
� put has a side effect—it writes the state—so we reflect that in its effects. But it also has any

side effect that its argument term t would have. For example, put (get + 1) both reads and
writes the state.

� get and put effects accumulate, but never go away. (We don’t have any idea of a “local” state
invisible to the outside world. But we could do... what might that look like?)

How about exceptions?

Γ ` e : Int & F

Γ ` throw e : t & F ∪ {throw}
Γ ` e1 : t & F1 Γ ` e2 : Int→ t & F2

Γ ` try e1 catch e2 : t & (F1 \ {throw}) ∪ F2

� Again, we assume that the thrown value is an Int; this simplifies the typing of try . . . catch
(Although it is much easier here to imagine how to adapt the effect system to thrown values
of any type. How would you do it?)

� throw e has any effects that e has: throw get, for example, both reads the state and thrown
an exception.

� throw e has an arbitrary return type. Why is this justified? Why is this necessary?
� In try e1 catch e2, we don’t know whether e2 will execute, so we include its effects regardless.

But, we can filter throw from the effects of e1, since if e1 did throw then it would be caught.
(This does not mean that the effects of try e1 catch e2 may not include throw. Why?)

36

