
Day 1.

1. Defining a Language

What is a programming language?

� well-defined
� representation of (originally: abstraction for)
� computation (originally: instructions to a thing that computes)

So, let’s build one!

Two aspects of language definition:

� Syntax
– from the Greek συνταξις(“suntaxis”) coordination
– most technical questions about syntax—parsing and printing—well-studied
– see compilers for mechanisms, theory of computation for theoretical aspects
– not particularly the focus of this course: parsers and printers will generally be provided

� Semantics
– from the Greek σηµαντικος(“sēmantikos”) significant
– many open questions—much of PL theory revolves around questions of defining and

approximating program semantics
– variety of techniques—from the very mathematical (interpreting programs as mathe-

matical functions) to the very empirical (programs mean what the compiler/hardware
do)

– this class—theory of language semantics; compilers—practice of language semantics
– can we ever really get away from translation?

� Most semantic concerns independent of syntactic concerns in programming languages

2. Arithmetic Expressions (Part 1)

Model of computation: grade school arithmetic.

Have to define syntax, even if it’s not the point of the course. Levels of syntax:

� input stream/characters ( 1 8 + 5 ) × 2

� lexemes/words ( 18 + 5 ) × 2

� terms/sentences ( 18 + 5 ) × 2

Underlining convention: language being defined is underlined, meta-notation written normally.
(Broken regularly from now on.)

Our approach: define the terms of a language; leave remaining syntactic concerns implicit.

Terms, intuitively: sums, products, constants. How to make formal?
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� Mathematical description: Let the set E be the smallest set such that
1. For all integers z ∈ Z, z ∈ E ;
2. If e1, e2 ∈ E , then e1 + e2 ∈ E ; and,
3. If e1, e2 ∈ E , then e1 × e2 ∈ E

� System of inference rules:

(z ∈ Z)
z ∈ E

e1 ∈ E e2 ∈ E
e1 + e2 ∈ E

e1 ∈ E e2 ∈ E
e1 × e2 ∈ E

� BNF (Backus-Naur form) rules:

E 3 e ::= z | e1 + e2 | e1 × e2

Key ideas:

� Each defines the same notion
� Each is compositional : bigger terms are built out of smaller terms

– Operations on terms will be defined the same way: recursive functions are the natural
consequence of compositional definition

� Still have to disambiguate our representation of terms, but parentheses &c. are in our meta-
notation, not in terms themselves

Happy surprise: (almost) direct correspondence between mathematical formalism and executable
Haskell

data Expr = Const Int | Plus Expr Expr | Times Expr Expr

Some functions:

eval :: Expr → Int

eval (Const z) = z

eval (Plus e1 e2) = eval e1 + eval e2

eval (Times e1 e2) = eval e1 ? eval e2

pp :: Expr → String

pp (Const z) = show z

pp (Plus e1 e2) = "(" ++ pp e1 ++ ") + (" ++ pp e2 ++ ")"

pp (Times e1 e2) = "(" ++ pp e1 ++ ") ? (" ++ pp e2 ++ ")"

Key ideas:

� Pattern matching: always your friend
� Recursion: always your other friend
� Summary: structure of computation parallels structure of data
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