
Day 20.

1. Qualified Polymorphism

We have monomorphic things—like integer addition—and polymorphic things—like identity or list
length. Does this allow for all the reuse we might want?

Not really. Consider the list element function.. something like:

elem _ [] = False

elem x (y:ys) = x == y | | elem x ys

What sort of type would we want to give this function? On the one hand, we would like it to have
some degree of polymorphism—we’d like to be able to apply elem to lists of integers, Booleans,
pairs of integers, and so forth. On the other hand, we can’t make it completely polymorphic—it
takes a long time to compare functions for equality.

Here’s another example:

insert x [] = [x]

insert x (y:ys)

| x < y = x:y:ys

| otherwise = y : insert x ys

Again, this works well for integers and Booleans, and very poorly for functions. There are also values
that we can easily compare for equality but are less easily ordered—sets of values, for example.

Our approach to this in languages like Haskell is called qualified polymorphism. Qualified polymor-
phism supports additional restriction on the instantiation of type variables. For example, we can
express the type of elem

elem :: Eq a ⇒ a → [a] → Bool

What does Eq a mean? Intuitively, it means that a should only be instantiated with types that
support equality—so we want these types:

elem :: Int → [Int] → Bool

elem :: Bool → [Bool] → Bool

but not

elem :: (Int → Int) → [Int → Int] → Bool

What does it mean for a type to support equality? Concretely, it means that there’s an equality
operator for these types: we have

(==) :: Int → Int → Bool

(==) :: Bool → Bool → Bool

but not

47



20.

(==) :: (Int → Int) → (Int → Int) → Bool

Of course, we can identify some categories of types like this—equality, ordering, text representations,
&c. But in general, programmers might need to add their own categories. In Haskell, we call these
type classes. Classes are defined and instantiated in user code. For example, we can define the Eq

class like this:

class Eq t

where (==) :: t → t → Bool

And we could add instances to it—that is, assert that types belong to the Eq class like this:

instance Eq Bool

where b1 == b2 = not (b1 ‘xor‘ b2)

instance Eq t ⇒ Eq [t]

where [] == [] = True

(x:xs) == (y:ys) = x == y && xs == ys

_ == _ = False

There’s a whole unhelpful tradition in making analogies about type classes: “type classes are like
X but...”, where X is most commonly interfaces. Unpacking the “but” is usually more work than
just understanding type classes directly. For example, because Haskell doesn’t have subtyping, any
discussion about the relationship between type classes and interfaces is going to be more about the
difference between parametric and subtype polymorphism than anything else. A type class is a set
of types, defined by common operations; that’s enough for now.

2. Monads and Effects

There’s one particular set of common operations that’s kept turning up this semester. If we think
back to the first interpreter I wrote in class, we had a couple of operations to chain together
operations that could fail:

done :: a → Maybe a

done x = Just x

andThen :: Maybe a → (a → Maybe b) → Maybe b

Just x ‘andThen‘ f = f x

Nothing ‘andThen‘ f = Nothing

We weren’t happy with just tracking failing operations tho, we also wanted to add some logging:

done :: a → ([String], a)

done x = ([], x)

andThen :: ([String], a) → (a → ([String], b)) → ([String], b)

(ws, x) ‘andThen‘ f = (ws ++ ws’, y)

where (ws’, y) = f x

In the meantime, we’ve implemented some effects. For example, we talked about state, in which
we interpreted commands as state transformers. We can fit this into a similar pattern:

done :: a → s → (a, s)

48



2. Monads and Effects

done x s = (x, s)

andThen :: (s → (a, s)) → (a → s → (b, s)) → s → (b, s)

st1 ‘andThen‘ k = λs → let (x, s’) = st1 s in f x s’

We’ve even talked about non-determinism. We can represent non-determinism by computing a list
of values (like a simple version of the distributions you’re building in homework 4)

done :: a → [a]

done x = [x]

andThen :: [a] → (a → [b]) → [b]

xs ‘andThen‘ f = concat (map f xs)

So we have a series of types—or, more correctly, type constructors—with common operations. This
is a great candidate for a type class. Let’s imagine what it might look like:

class Effect e

where done :: a → e a

andThen :: e a → (a → e b) → e b

We can add some instances of this class.

instance Effect Maybe

where done x = Just x

Just x ‘andThen‘ f = f x

Nothing ‘andThen‘ f = Nothing

instance Effect ((,) [String])

where done x = ([], x)

(ws, x) ‘andThen‘ f = (ws ++ ws’, y)

where (ws’, y) = f x

instance Effect []

where done x = [x]

xs ‘andThen‘ f = concat (map f xs)

In fact, this idea is useful enough that it’s a standard part of Haskell.

class Monad m

where return :: a → m a

(>>=) :: m a → (a → m b) → m b

Type constructors like this are called monads—or triples, or Kleisli triples—and were proposed
as a mathematical tool to model effects in impure programming languages. Later, people realized
that they could be used to implement effects in pure languages. They’re so central to Haskell that
they get special syntax—do notation. Again, there’s a cottage industry in explaining monads. The
important point is that you don’t need them explained—you’ve already invented them.

49


