
Instance Chains: Type Class Programming
Without Overlapping Instances

J. Garrett Morris Mark P. Jones
Portland State University
{jgmorris,mpj}@cs.pdx.edu

Abstract
Type classes have found a wide variety of uses in Haskell programs,
from simple overloading of operators (such as equality or ordering)
to complex invariants used to implement type-safe heterogeneous
lists or limited subtyping. Unfortunately, many of the richer uses
of type classes require extensions to the class system that have
been incompletely described in the research literature and are not
universally accepted within the Haskell community.

This paper describes a new type class system, implemented in
a prototype tool called ilab, that simplifies and enhances Haskell-
style type-class programming. In ilab, we replace overlapping in-
stances with a new feature, instance chains, allowing explicit al-
ternation and failure in instance declarations. We describe a tech-
nique for ascribing semantics to type class systems, relating classes,
instances, and class constraints (such as kind signatures or func-
tional dependencies) directly to a set-theoretic model of relations
on types. Finally, we give a semantics for ilab and describe its
implementation.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages; F.3.3 [Logics and Meanings of Programs]: Studies of Pro-
gram Constructs—Type structure

General Terms Design, Languages

Keywords Qualified types, Type classes, Overlapping instances,
Fucntional dependencies, Haskell

1. Introduction
Type classes are a widely used, studied, and extended feature of the
Haskell programming language. Some extensions, such as multi-
parameter type classes, functional dependencies, and type func-
tions, have been extensively studied and debated. In contrast, the
overlapping instances extension has received relatively little atten-
tion, despite its use in several interesting examples of type-level
programming.

One example of overlapping instances is the “smart construc-
tors” in Wouter Swierstra’s solution to the expression problem in
Haskell [18]. We discuss this example in detail in Section 2.2.2,
but preview that discussion here. His solution uses a coproduct con-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’10, September 27–29, 2010, Baltimore, Maryland, USA.
Copyright © 2010 ACM 978-1-60558-794-3/10/09. . . $10.00

structor t :+: u and a subtyping relation f :<: g, which is im-
plemented with the following overlapping instance declarations:

instance f :<: f
instance f :<: (f :+: g)
instance f :<: h ⇒ f :<: (g :+: h)

The restrictions on overlapping instances in Haskell constrain the
use of this relation in several ways. Most significantly, :<: only
recurses on the right-hand side of a :+:, limiting its use to list-
like (rather than tree-like) coproducts. There is also an unresolv-
able overlap between the first and third instances. This overlap
causes Hugs, one implementation of Haskell, to reject the instances
outright, and will cause GHC, another Haskell implementation,
to issue type errors for some otherwise-valid predicates (see Sec-
tion 2.2.2 for more details).

These issues are typical of those encountered by Haskell pro-
grammers using overlapping instances. We argue that overlapping
instances lack modularity, lack specification, and that they signifi-
cantly complicate reasoning about type-level programming.

This paper proposes an alternative approach to type-class pro-
gramming, replacing overlapping instances with a new feature
called instance chains. Using instance chains, we could rewrite
Swierstra’s subtyping example as:

instance f :<: f
else f :<: (g :+: h) if f :<: g
else f :<: (g :+: h) if f :<: h
else f :<: g fails

Our version expresses the alternation between the three instances
directly instead of relying on the overlapping instances mechanism.
As a result, it recurses on both sides of the :+: operator, and re-
solves the overlap between the first and third instances. We can also
close the definition of :<: in the last line of the declaration. This
example highlights the major features of instance chains: explicit
alternation within instance declarations, and explicit failure in both
predicates and instance declarations. We argue that reasoning about
programs with instance chains is simpler than reasoning about pro-
grams with overlapping instances despite the additional syntax.

This paper proceeds as follows. Section 2 describes type classes
and some frequently used extensions. In the process, we develop
an intuitive semantics for type classes (following the lead of Jones
and Diatchki [7]). We then examine several interesting examples of
type-class programming that use overlapping instances and func-
tional dependencies. We identify places where existing type-class
programming techniques are unclear or could be improved.

Section 3 describes the type class system implemented by our
prototype tool ilab. In designing ilab, we identified some us-
age patterns that are implemented in Haskell using overlapping in-
stances, and made those patterns expressible directly, simplifying
coding and removing the need for overlapping instances. The key



features of ilab are: instance chains, allowing programmers to ex-
press alternation directly in instance declarations; and explicit fail-
ure, allowing programmers to define and test when predicates do
not hold. We explain these features and their consequences. We re-
visit the earlier examples of type-class programming, showing how
to simplify and improve them using instance chains.

Of course, this is not the first attempt to simplify type-level
programming in Haskell: much entertainment has resulted from the
odd or incompletely specified interaction of otherwise-reasonable
extensions to the Haskell type-class system. To avoid repeating this
experience, Section 4 formalizes a set-theoretic semantics for type
classes. We highlight several places where instance chains simplify
reasoning about type classes compared to overlapping instances.
We also state properties, such as soundness and completeness, that
link the implementation of a type-class system to its semantics,
and provide a basis for programmers to reason about type-class
programs. In the process, we connect the semantics of type classes
to Jones’ theory of qualified types.

Section 5 discusses the implementation of ilab and describes
the algorithms that ilab uses to validate sets of instances and to
(attempt to) prove predicates. Section 6 discusses related work,
while Section 7 discusses future work and concludes.

2. Background
2.1 Type classes
Type classes [21] provide an extensible mechanism for giving prin-
cipal types to overloaded functions. For instance, we can define a
type class for equality:

class Eq t where (==) :: t → t → Bool

The type of == is now constrained, or qualified, by a predicate
mentioning the Eq class:

(==) :: Eq t ⇒ t → t → Bool

We can explain this qualified polymorphic type using set notation.
The == function can assume types from the set

{t→ t→ Bool | t ∈ Eq}
We conclude that one should view type classes as specifications of
sets of types, not just as tools for typing overloaded functions.

Type classes are populated by instance declarations. If we had
a primitive integer comparison function primIntEq, then we could
write an Eq instance for Int as follows

instance Eq Int
where x == y = primIntEq x y

Instance declarations themselves may use qualified polymorphism.
For example, the definition of Eq for lists reads:

instance Eq t ⇒ Eq [t]
where [] == [] = True

(x:xs) == (y:ys) = x == y && xs == ys
_ == _ = False

As type classes correspond to sets of types, instance declarations
correspond to assertions about those sets. The first declaration
asserts that Int ∈ Eq. The second asserts that t ∈ Eq =⇒ [t] ∈
Eq. Together, these assertions require that Eq include the subset
{Int, [Int], [[Int]], . . . } of the set Type of all types.

There have been numerous proposals to extend Haskell’s class
system. In the next sections, we discuss those relevant to our work.

2.1.1 Multi-parameter type classes
Although Wadler and Blott [21] focus on type classes with a single
parameter (which correspond to sets of types with associated op-

erators), they proposed that type classes could also apply to more
than one parameter. For example, the multi-parameter type class

class Elems c e where . . .

could describe the relation that the elements of (collection) c have
type e. This class might be populated for lists:

instance Eq t ⇒ Elems [t] t where . . .

and for sets:

instance Ord t ⇒ Elems (Set t) t where . . .

For this example, we assume Sets are implemented by balanced
binary trees, and so a type t must have an ordering before we can
construct a value of type Set t. The type class Ord captures this
constraint.

Just as single-parameter type classes can be interpreted as sets
of types, multi-parameter type classes can be interpreted as rela-
tions on types (i.e., sets of tuples of types). Assuming the instances
for Eq above, and that we have an instance of Ord for Int, we would
expect Elems to include the following subset of Type× Type

{([Int], Int), (Set Int, Int), ([[Int]], [Int]), . . . }

2.1.2 Functional dependencies
One of the operations of the Elems class might be an insert
function with type

insert :: Elems c e ⇒ e → c → c

Using it, we could write the function

insert2 c = insert True (insert 'x' c)

to insert both the Boolean constant True and the character constant
'x' into the collection c. This function has the type:

(Elems c Bool, Elems c Char) ⇒ c → c

While one could imagine a collection type c that satisfied both
qualifiers, we may wish to require homogeneity. That constraint
can be expressed by adding a functional dependency [6, 10] to the
definition of Elems:

class Elems c e | c → e where . . .

This requires that the value of parameter c uniquely determines the
value of parameter e, or, equivalently, that for any two predicates
Elem c e and Elem c' e', if c = c', then e = e'. This would
make the definition of insert2 above a type error, because it would
require that Char = Bool

The functional dependency is a property of the relation itself,
not of the constraints on it; for example, the Elems class from
Section 2.1.1 had this functional dependency, even though we had
not yet added the constraint. However, were we to add an instance

instance Elems [Int] Char where . . .

that interpreted characters by their ASCII values, then both the
predicates Elems [Int] Int and Elems [Int] Char would hold
and the relation would no longer have the functional dependency.
With the functional dependency constraint on the Elems class,
a program could not contain both this instance and the instance
Elems [t] t from the previous section.

2.1.3 Overlapping instances
Two instances overlap if they could apply to the same predicate.
For example, consider a type class C with the following instances:

instance C (a, [b]) where . . .
instance C ([a], b) where . . .



Either of these instances could be used to solve the predicate
C ([a], [b]). However, the compiler has no guarantee that the
class methods are implemented equivalently for both instances, and
so a program with both instances may have multiple distinct inter-
pretations. To avoid this kind of (potential) incoherence, Haskell 98
prohibits any overlap between instances.

This restriction is sometimes inconvenient. The Show class in-
cludes types whose values have a textual representation:

class Show t where show :: t → String

Haskell’s syntax for lists surrounds the elements with brackets and
separates them with commas—for example, [1,2,3]. We could
write a Show instance that used this syntax:

instance Show t ⇒ Show [t] where . . .

Haskell also has special syntax to allow lists of characters to be
written as strings, as in "string", for example. We might like to
add a special instance of Show to handle this case:

instance Show [Char] where . . .

but that would not be allowed because this instance overlaps with
the more general instance.

Peyton Jones et al. [13] describe an extension to the Haskell
type-class system that allows instances to overlap as long as one
of them is more specific than the other, using substitutions to make
the notion of “more specific” precise. Given two instances

instance Q1 ⇒ P1 where . . .
instance Q2 ⇒ P2 where . . .

the instances overlap if P1 ∼ P2 (i.e., P1 unifies with P2) The first
instance is more specific than the second if there is a substitution
S such that P1 = S P2 but there is no substitution T such that
T P1 = P2. This extension would allow the two instances of Show,
but would prohibit the two instances of C at the beginning of this
section because neither is a substitution instance of the other.

A full description of how overlapping instances affect the se-
mantics of type classes is beyond the scope of this paper; however,
we do mention some of the difficulties in Section 2.3.

2.2 Type-class programming
This section describes two (simplified) examples from the literature
that use the extensions of the Haskell type-class system described
earlier. We focus on examples that use overlapping instances be-
cause of their relative complexity in both implementation and se-
mantics. We will return to these examples in Section 3 to demon-
strate instance chains.

2.2.1 Type-level arithmetic
In this section, we describe the implementation of several mathe-
matical operations at the type level using Peano arithmetic and type
classes, based on work by Thomas Hallgren [2].

We begin by representing Peano numbers at the type level using
two data types, one for zero and one for successor. We do not
provide value-level constructors for these types because we only
intend to use them at the type level.

data Z; data S n

Similarly, we will introduce types to represent Boolean values:

data T; data F

Hallgren defines a class Lte to implement the ≤ relation at the
type level as follows:

class Lte m n b | m n → b
instance Lte Z (S n) T
instance Lte (S n) Z F
instance Lte m n b ⇒ Lte (S m) (S n) b

As indicated by the functional dependency, Hallgren has actually
defined the characteristic function of the ≤ relation, using addi-
tional type constructors T and F to represent the corresponding
Boolean values. This allows him more flexibility in using the Lte
class because he can now determine, not only when one number is
less than or equal to another, but also when that property fails.

Hallgren goes on to use the Lte class to define insertion sort
at the type level. However, the Haskell implementation that he was
using (Hugs 98) could not solve the type constraints in his insertion
sort example. His code works in ilab without modification, so we
do not reproduce it here.

Instead, we try to define another operation on Peano numbers:
greatest common divisor. This is not an arbitrary choice: for ex-
ample, work on typing low-level data structures in Haskell has
relied on a type-level GCD operator [1]. We begin by defining a
(bounded) subtraction operation:

class Subt m n p | m n → p -- p = m - n
instance Subt Z n Z
instance Subt m Z m
instance Subt m n (S p) ⇒ Subt m (S n) p

We use this to implement Euclid’s algorithm for GCD:

class Gcd m n p | m n → p -- p = gcd(m,n)
instance Gcd m m m
instance (Lte n m T, Subt m n m', Gcd m' n p)
⇒ Gcd m n p

instance (Lte n m F, Subt n m n', Gcd m n' p)
⇒ Gcd m n p

However, both GHC and Hugs reject this trio of instances. While
it is true that the conclusions of the second and third instances
(trivially) unify, there is no actual overlap between those instances.
For both instances to apply to the same predicate Gcd m n p, both
the predicates Lte n m T and Lte n m F would have to hold.
However, the functional dependency in Lte makes it impossible
for both predicates to hold.

2.2.2 The expression problem
In this section, we return to the example presented in the introduc-
tion. We describe its context, a Haskell solution to the expression
problem that relies on multi-parameter type classes and overlapping
instances, and highlight the difficulties these extensions introduce.

The expression problem [20] is a benchmark for comparing
language expressiveness and modularity. The starting point is to
define, by cases, a data type for arithmetic expressions, as well
as an operation over that data type. For example, the data type
might contain integer constants and addition, and the operation
might be evaluation, consuming an expression and generating an
integer value. The challenge is to extend the data type with both
a new case (such as multiplication) and a new operation (such as
pretty-printing). This extension should be done without changing or
recompiling the original code, and without losing static type safety.

Though definition of types by cases is standard in both func-
tional and object-oriented languages, the expression problem is
usually challenging in either paradigm. In many functional lan-
guages, adding a new case to an existing data type requires chang-
ing the definition of the data type and all the functions that use it;
in many object-oriented languages, adding a new operation requires
changing the definition of the base class and its subclasses.

Wouter Swierstra proposed a Haskell solution to the expression
problem in “Data Types à la Carte” [18]. His solution works by



constructing coproducts of functor type constructors (using a type
constructor :+:), injecting values into these coproducts (using
a :<: type class), and then defining operations over coproducts
using one type class per operation. We highlight some details that
arise in the construction of coproducts.

The type constructor f :+: g represents the coproduct of the
functor type constructors f and g, and is defined similarly to the
standard Haskell Either type:

data (f :+: g) e = Inl (f e) | Inr (g e)

The type constructors for various possible expressions will also be
functors but the use of functors is irrelevant to the remainder of
this presentation. Suppose that we have a type constructor Const
for integer constants and a type constructor Add for additions. The
type of an expression containing either constants or sums could be
built using the coproduct Const :+: Add. Constants would be in-
jected into the expression type using the Inl value constructor, and
sums using the Inr constructor. We could extend the expression
type by adding a new type to the coproduct. For instance, if the
type Multiply represents multiplications, we could construct ex-
pressions with the coproduct Const :+: (Add :+: Multiply).
We would still inject constants into these new expressions using
Inl, but additions would be injected using Inl◦Inr and multipli-
cations using Inr◦Inr.

It is somewhat tiresome to construct different injection func-
tions for each type in each possible coproduct. Swierstra alleviates
this by defining a type class f :<: g to indicate that there is an
injection from f e to g e for any type e. The class is defined by:

class f :<: g where inj :: f e → g e

Swierstra populates this class using three instances. The first
says that :<: is reflexive, with the obvious injection:

instance f :<: f where inj = id (A)

The second instance checks the left-hand side of the :+: type:

instance f :<: (f :+: g) where inj = Inl (B)

The final instance recurses on the right side of the :+: type:

instance (f :<: h) ⇒ f :<: (g :+: h)
where inj = Inr ◦ inj (C)

Swierstra comments on the overlap between instances (B)
and (C): because (B) is a substitution instance of (C), predi-
cates will be checked against (C) only if they fail to match (B),
and the set of instances will behave as expected. More interest-
ingly, instances (A) and (C) overlap at predicates of the form
(f :+: g) :<: (f :+: g) but neither is a substitution instance
of the other. As a result, Hugs will reject this set of instances out-
right for having unresolved overlap. GHC accepts the instances,
but attempting to use the inj function with such a predicate will
result in a type error. This error occurs at the usage of inj, not at
the ambiguous overlap in the definition of :<:.

Although the :+: type constructs a coproduct of types, the
subtype relation :<: cannot fully exploit it because the recursive
case only descends the right-hand side. Thus, while the predicate

Sum :<: (Const :+: (Sum :+: Product))

holds, the predicate

Sum :<: ((Const :+: Sum) :+: Product)

does not, because it requires recursion on the left-hand side of
the :+: operator. This forces a list-like use of the :+: con-
structor; for instance, if t and u are already coproducts, we
would not be able to inject components of t into the coprod-
uct t :+: u. To fix this, we could replace instance (B) with

instance (f :<: g) ⇒ f :<: (g :+: h)
where inj = Inl ◦ inj (B-2)

However, (B-2) and (C) are each substitution instances of the other.
The Haskell compiler no longer has a way to order these instances,
and so a program containing (B-2) and (C) would be rejected.

2.3 Challenges
Haskell programmers have three main challenges when using over-
lapping instances. We summarize them here.

Lack of modularity. In “Data Types à la Carte”, the three in-
stances of :<: are presented together, and in order from most to
least specific. However, Haskell imposes no requirement that the
instances be presented together, or in any particular order, or even
in the same module. A programmer has no way to know whether a
particular instance will be overlapped before it is used.

In fact, GHC only attempts to determine which instance is most
specific at call sites, and so will accept ambiguously overlapping
instances—that is, cases where two instances apply to the same
predicate and neither is more specific than the other—and not re-
port an error unless the programmer attempts to use an overloaded
function at one of the ambiguous types. Ambiguity could be intro-
duced in a library but not discovered until some client of the library
uses one of the types at which the instances are ambiguous.

Logical consistency. The syntax of instance declarations in
Haskell suggests logical implication. For example, the Eq instance
for lists begins:

instance Eq t ⇒ Eq [t]

and can be read as an implication t ∈ Eq =⇒ [t] ∈ Eq. Even
in Haskell 98, this interpretation does not completely cover the
meaning of the declaration. Because Haskell 98 instances cannot
overlap, the only way that [t] can be in Eq is for t to be in Eq, so a
more accurate interpretation would be t ∈ Eq ⇐⇒ [t] ∈ Eq.

The meaning of overlapping instances is more obscured. A par-
ticular instance only applies if a more specific instance could not
be found. Furthermore, if the preconditions of the most specific
instance are not met, the compiler does not check to see if less
specific instances might be applicable but instead immediately is-
sues an error. As a result, it is impossible to interpret the meaning
of an individual instance declaration without referring to the other
instances in the program. While the syntax of instances still sug-
gests a logical interpretation, applying that interpretation gives an
incomplete and potentially incorrect meaning.

Lack of specification. Peyton Jones et al. [13] describe some is-
sues introduced by overlapping instances. However, they do not
consider the interaction of overlapping instances with some other
type-class system features, such as improvement. Research on
functional dependencies in class systems [6, 7, 17] generally does
not mention overlapping instances, and recent work by Schrijvers et
al. [14] related to type classes explicitly excludes overlap. Without
a specification to define the correct behavior, code must be tailored
to a particular implementation. For example, Kiselyov et al. [9]
discover significant incompatibilities between GHC and Hugs and
end up tailoring their code to GHC. Similarly, Swierstra’s :<:
instances are not accepted by Hugs.

3. Features of the ilab type-class system
As part of the High Assurance Systems Programming1 project at
Portland State University, we are designing a dialect of Haskell
(called Habit) for use in low-level systems programming tasks.

1 http://hasp.cs.pdx.edu



One of our goals is to preserve and expand the possibilities of
type-class programming while simplifying the underlying model of
type classes. As background to this effort, we surveyed type-level
programming in Haskell, using both the existing research literature
and the Hackage database of Haskell libraries as resources [11].
Based on the results of our survey, we have developed the ilab
type-class system and prototype implementation. We use ilab to
experiment with features of the Haskell type-class system; it is not
a complete implementation of either Haskell or Habit type classes,
but implements features central to both. Despite their history, the
features of ilab are not tied to other features of Habit; they could
just as well be applied to Haskell or other Haskell dialects. The
remainder of this section describes the features of ilab and shows
how they simplify and improve the examples from Section 2.2.

3.1 Design of the ilab type-class system
The ilab class system is based on the Haskell 98 class system,
extended with overlapping instances and functional dependencies.
However, rather than support overlapping instances in ilab, we
added new features based on the usage patterns implemented using
overlapping instances in Haskell. These features support and extend
Haskell-style type-level programming while avoiding the complex-
ity that would be introduced by overlapping instances.

For the remainder of the paper, we use Habit instance syntax
for examples using ilab features, and continue to use Haskell syn-
tax for examples that do not rely on any ilab-specific functionality.
The Habit syntax for instance declarations is given by the following
BNF-like grammar, where non-terminals have initial caps, optional
elements are surrounded by brackets, and optional repeatable ele-
ments are surrounded by braces.

Pred ::= ClassName Type {Type} [fails]
Context ::= Pred {, Pred}
Clause ::= Pred [if Context] [where Decls]
Chain ::= instance Clause {else Clause}

There are, of course, additional constraints on instance chain
declarations—all the clauses in a chain must refer to the same
class, and fails clauses cannot contain method definitions—as
well as other restrictions as in Haskell. Habit’s syntax differs from
that of Haskell 98 in three ways:

1. Predicates may include the fails keyword, indicating that the
given type tuple is not in the named class;

2. Clauses may be chained together using the else keyword, al-
lowing a programmer to indicate explicit alternation; and,

3. The instance being defined appears to the front of the instance
declaration, calling attention to it even in the presence of long
or complex preconditions.

Habit uses additional features, such as the functional notation pro-
posed by Jones and Diatchki [7]. For example, the Haskell instance
declaration:

instance (Lte n m T, Subt m n m', Gcd m' n p)
⇒ Gcd m n p

can be expressed in Habit as:

instance Gcd m n = Gcd (Subt m n) n
if Lte n m T

Because it is a prototype tool and functional notation is orthogonal
to our other goals, ilab does not support rewriting passes such as
those used to implement functional notation. In ilab we would
have to use the following version instead:

instance Gcd m n p
if Lte n m T, Subt m n m', Gcd m' n p

This is the form we will use for the remainder of the paper. Next,
we explore the new features introduced by ilab, and some of their
consequences.

3.1.1 Explicit alternation
Many of the examples we found use overlapping instances to im-
plement alternation between instances. This approach is fragile, ob-
scures the programmer’s intention, and limits the algorithms the
programmer can encode. In ilab, a class can be populated by
multiple, non-overlapping instance chains, where each chain may
contain multiple clauses (separated by the keyword else). Unlike
between chains, we make no limitation on overlap between the
clauses within a single chain. During instance selection, the clauses
within an instance chain are checked in order. Using instance chains
allows clearer expression of programmer intentions and simplifies
the encoding of algorithms that would be complex or impossible to
express with overlapping instances.

For example, in Section 2.2.2, we presented the class :<: and
the three instances used to populate it. These instances implement
a simple conditional by making the alternative clause more general
than the consequent. ilab allows a more direct expression of the
conditional:

instance f :<: f where . . .
else f :<: (f :+: g) where . . .
else f :<: (g :+: h) if f :<: h where . . .

3.1.2 Explicit failure
Some of the examples we found attempted to encode failure of
the instance search [9]. However, lacking a mechanism to encode
failure directly, the examples used a combination of the class and
module system to prevent the user from solving certain constraints.
While this approach works, it leads to confusing error messages
and cannot be used as a building block for more complex instance
schemes. Making failure explicit in both predicates and instance
declarations significantly simplifies coding these patterns.

By defining the characteristic function of the ≤ relation instead
of the relation itself (as discussed in Section 2.2.1), Hallgren could
express both properties of the form m ≤ n and ¬(m ≤ n). With
explicit failure, we can define the ≤ relation directly:

instance Lte Z n
else Lte (S m) (S n) if Lte m n
else Lte m n fails

Because we implement the relation directly, we no longer need the
third parameter to the Lte class or the functional dependency.

One use of explicit failure is in the definition of closed classes.
For example, at one point [16], the crypto package defined a
class AESKey and three instances for types Word128, Word192,
and Word256, the only valid key lengths for AES encryption. To
prevent users from adding invalid types to the class, AESKey was not
exported. As a consequence, users could not write type signatures
such as:

AESKey a ⇒ a → ByteString → ByteString

In ilab, we can close the AESKey class with the following instance
chain:

instance AESKey Word128
else AESKey Word192
else AESKey Word256
else AESKey a fails

No additional instances of AESKey can be added because they
would overlap with the (last clause of the) existing instance, so
there is no need to hide the class.



3.1.3 Backtracking search
Haskell instance search never backtracks: if no two instance heads
unify, then no predicate could be solved by more than one instance.
However, combined with overlapping instances, this complicates
reasoning about instances. Even if an instance could apply to a
predicate, it will not be checked if a more specific instance exists
anywhere in the program, and failure to prove the preconditions of
the most specific instance causes instance search to fail rather than
to attempt to use less specific instances.

ilab instance search backtracks when it can disprove the pre-
condition of an instance (either because of a fails clause or
because of a functional dependency). When backtracking, ilab
checks clauses within an instance chain in order. The order in
which ilab checks instance chains is unimportant because clauses
in different chains are not allowed to overlap.

3.2 Type-class programming, revisited
In this section, we demonstrate how the examples from Section 2.2
are changed and improved using the features of ilab.

Section 2.2.1 includes several examples of implementing type-
level arithmetic using type classes. The first example is the char-
acteristic function for the ≤ relation. Section 3.1.2 described how
this example can be improved using instance chains. Next, we at-
tempted to define a Gcd class. We define the class as before, but
populate it with a single instance chain that uses the Lte relation:

1 instance Gcd m m m
2 else Gcd m n p
3 if Lte n m, Subt m n m', Gcd m' n p
4 else Gcd m n p
5 if Lte n m fails, Subt n m n', Gcd m n' p
6 else Gcd m n p fails

As the clauses overlap, we have combined them into an instance
chain. We also add the clause at line 6, closing the Gcd class.

Section 2.2.2 describes a solution to the expression problem.
The solution relies on a type constructor :+: to construct coprod-
ucts of types, and a type class :<: for subtypes. However, the im-
plementation of :<: is asymmetric—it recurses only on the right-
hand side of a :+: type. We can implement it symmetrically:

1 instance f :<: f
2 where inj = id
3 else f :<: (g :+: h) fails if f :<: g, f :<: h
4 else f :<: (g :+: h) if f :<: g
5 where inj = Inl ◦ inj
6 else f :<: (g :+: h) if f :<: h
7 where inj = Inr ◦ inj
8 else f :<: g fails

Lines 1-2 provide a base case, and correspond to instance (A)
in the original implementation. Line 8 serves as the other base
case. We explicitly close the class to ensure that we have evidence
for backtracking in the middle clauses of the instance. Lines 6-7
recurse on the right-hand side of a :+: constructor, and correspond
to instance (C). Lines 4-5 replace instance (B). Unlike the original
implementation, this clause recurses on the left-hand side of the
:+: constructor. If both f :<: g and f :<: h hold, ilab would
select the left injection because of the ordering of the respective
clauses. This behavior may be surprising to programmers, so we
add the additional (but optional) clause at Line 3 to rule out this
kind of injection completely.

4. A semantics for type classes
The history of Haskell type-class research is littered with proposals
to extend, enhance, or simplify writing type-class programs. Some

of these proposals, while sensible as proposed, have led to unex-
pected interactions with other features, or have proven difficult for
programmers to understand. We hope to avoid a similar fate for
instance chains by defining a semantics for type classes and for
instance chains, providing a basis for understanding their use and
implementation and a foundation for future research in type classes.

Previous work has focused on translating programs in a lan-
guage with type classes into programs in a language without type
classes (for example, by introducing dictionaries of type-specific
method implementations and transforming qualifiers into extra pa-
rameters [21]). This approach conflates the meaning of type classes
with their implementation, making it difficult or impossible to de-
fine properties of type classes without reference to a particular im-
plementation, or to prove properties of the implementation itself.
This conflation is particularly unfortunate when it comes to under-
standing the interaction of type-class features or when the imple-
mentation itself is suspect, such as in the interaction between func-
tional dependencies and overlapping instances.

This section elaborates the intuitive understanding of type
classes as relations on types to give a full semantics for ilab type
classes. We follow a standard approach from mathematical logic:
first, we characterize models of type classes. Then, we define a
property that holds when a given model describes a particular type-
class program; we use this property to capture properties of imple-
mentations such as soundness or completeness. This approach does
not attempt to capture the details of type class implementations
such as substitutions, improvement, simplification, etc. Rather, it
describes the meaning of type classes and provides a basis both for
reasoning about programs that use type classes and for evaluating
type-class implementations.

4.1 Modeling type classes
Single parameter type classes, such as Eq or Ord, are naturally mod-
eled by sets of types. Let Type refer to the set of all types. Writing
M(Eq) for the model of the Eq class, we can say that M(Eq) ⊆
Type or, equivalently, M(Eq) ∈ P(Type). This approach extends
to multi-parameter type classes by using relations on types instead
of sets of types. Just as (the models of) Eq and Ord are subsets of
Type, (the model of) a class like Elems (see Section 2.1) is a subset
of Type× Type, or equivalently, M(Elems) ∈P(Type2). A three-
parameter class would be modeled by an element of P(Type3), and
so forth. The number of arguments to a class is called its arity, and
we will write arity(C) (where C ranges over the set of class names
ClassName) to refer to the arity of class C. For example, we have
arity(Eq) = 1 and arity(Elems) = 2. Using the arity function,
we can write a general rule that captures the examples so far: for a
class C, we have M(C) ∈P(Typearity(C))

A program will typically contain a number of type classes. To
model an entire program, we use a function from ClassName to
models of the individual classes. We can then describe a model of
a program as a dependently typed function

M : (C : ClassName)→P(Typearity(C))

This is not the only possible structure for M; we will discuss
some of the design choices further when describing the handling
of constraints.

Next, we define a family of relations M |= x that hold if
“M models x”. We develop this family of relations “bottom-up”,
starting from single predicates and working towards full programs.

Predicates. Predicates are the simplest parts of a type-class sys-
tem. We define predicates with the following grammar

f ::= holds | fails Flags
π ::= C ~τ f Predicates



ε@~τ = ε

((∀~x. P⇒ C ~υ f ) ; α)@~τ =

{
(S P⇒ C (S ~υ) f ) ; α@~τ if ∃S. dom(S) ⊆ ~x ∨ S ~υ = ~τ

α@~τ otherwise

Figure 1. The restriction of an axiom α to the type tuple ~τ

Here ~τ is an (arbitrary-size) tuple of types. As Haskell predicates
cannot express failure, the Haskell predicate C~τ is equivalent to the
ilab predicate C ~τ holds.

Predicates correspond directly to the model of type classes:

M |= (C ~τ holds) ⇐⇒ ~τ ∈ M(C)

M |= (C ~τ fails) ⇐⇒ ~τ /∈ M(C)

The presence of flags within predicates makes possible a simple
syntactic definition of the negation of a predicate:

C ~τ holds = C ~τ fails C ~τ fails = C ~τ holds

Contexts. Contexts, or lists of predicates, occur frequently:

P ::= ~π Contexts

As above, ~π is an arbitrary-size tuple of predicates. We model con-
texts as conjunctions. A context is modeled if all of its predicates
are modeled:

M |= P ⇐⇒ ∀π ∈ P.M |= π

We write the negation of a context P as P. The negation of a context
is modeled if the negation of one of its predicates is modeled:

M |= P ⇐⇒ ∃π ∈ P.M |= π

Axioms. We turn to the axioms of ilab, instance chains. The
syntax of instance chains is given by:

α ::= (∀~x. P⇒ π) ; α | ε Axiom schemes

Because instance chains may contain polymorphic clauses, we re-
fer to them as axiom schemes. Rather than attempting to model
axiom schemes directly, we first specialize them to concrete ax-
ioms, removing any polymorphism in the process. Intuitively, we
specialize an axiom scheme α by enumerating each type tuple that
matches the arity of the class mentioned in α, and then attempting
to restrict each clause to that tuple.

Some examples may clarify specialization. Consider the in-
stance chain

instance C Int else C Bool else D t ⇒ C t

which corresponds to the axiom

(()⇒ C Int holds) ; (()⇒ C Bool holds) ;

(∀t. (D t holds)⇒ C t holds) ; ε

where we have omitted empty quantifiers. Note that the last clause
contains qualified polymorphism. If our set of types were limited
to {Bool, Int,Float}, we would generate the following concrete
axioms from this instance chain:

(()⇒ C Int holds) ; ((D Int holds)⇒ C Int holds) ; ε

(()⇒ C Bool holds) ; ((D Bool holds)⇒ C Bool holds) ; ε

((D Float holds)⇒ C Float holds) ; ε

Note particularly the lack of quantifiers: there is no polymorphism
in concrete axioms. Alternatively, consider the instance chain

instance Eq t ⇒ Eq [t]

With the type constructors {Int, []}, where [] constructs the list
type, we would generate the following concrete axioms

((Eq Int holds)⇒ Eq [Int] holds) ; ε

((Eq [Int] holds)⇒ Eq [[Int]] holds) ; ε

...

We begin formalizing specialization by defining the syntax
of concrete axioms, which follows the syntax of axiom schemes
closely, but omits the quantifiers.

γ ::= (P⇒ π) ; γ | ε Concrete axioms

Whether ε denotes a concrete axiom or axiom scheme should be
obvious from context. Next, we define the restriction of an axiom
α to a particular type tuple ~τ , written α@~τ . This operation removes
the polymorphism from α by attempting to instantiate the type
variables in each clause so that the instance head matches ~τ ; when
that is not possible, the clause is dropped. The definition of α@~τ
is shown in Figure 1. (We refer to the variables mentioned by a
substitution S as dom(S), and abuse notation by treating the vector
of quantified variables as a set.)

We can now give the concrete axioms generated from a given
axiom scheme. An empty axiom ε generates exactly one concrete
axiom, also ε. If all the clauses in a (non-empty) axiom scheme α
are for class C, then the set of concrete axioms generated from α is

{α@~τ | ~τ ∈ Typearity(C)}
The set of concrete axioms for a given program may be infinite,
but because we can determine whether a concrete axiom was spe-
cialized from a particular axiom scheme by unification, it is still
recursive.

We now describe the modeling of concrete axioms. The empty
axiom is trivially modeled:

M |= ε

The concrete axiom (P ⇒ π) ; γ is modeled by the two disjuncts
that it represents: if P is modeled, then π must be modeled; alter-
natively, if P is modeled, then γ must be modeled:

M |= ((P⇒ π) ; γ) ⇐⇒ M |= P =⇒ M |= π ∧
M |= P =⇒ M |= γ

Axioms correspond to statements about the inclusion or exclu-
sion of particular tuples within the model of a class. Other aspects
of type-class systems can be modeled as properties of all the tuples.
We describe several such properties next.

Functional dependencies. Our implementation supports the use
of functional dependencies, both to constrain instance declarations
and to introduce improvement into the deduction algorithm. Func-
tional dependencies were originally proposed for class systems as
a mechanism to induce improving substitutions [6]; these improve-
ments, in turn, are only valid because of properties of the underly-
ing relations [10]. Here, we formalize functional dependencies as
properties of the models of classes.

The Elems class from Section 2.1

class Elems c e | c → e



has a functional dependency stating that the parameter c deter-
mines the parameter e. We can phrase this with the same language
used to describe functions: given two predicates Elems c e and
Elems c' e', if c = c' then e = e'.

We generalize the syntax of functional dependency constraints
as follows:

X, Y ⊆ N Index sets
δ ::= C : X  Y Functional dependencies

The Elems class would generate the constraint Elems : {0}  
{1}, indicating that the 0th parameter of the class determines the
1st parameter. The class:

class F t u v | t v → u

would generate the constraint F : {0, 2} {1}.
Modeling these constraints is a straightforward extension of the

single-parameter version given above.

M |= C : {X} {Y} ⇐⇒ ∀~τ, ~υ ∈ M(C).

~τ |X = ~υ|X =⇒ ~τ |Y = ~υ|Y
If ~z is a tuple and X is a subset of N, then we write ~z|X to refer to
the tuple consisting of those elements of~z indexed by the elements
of X. Appealingly, this is exactly the definition of a functional
dependency used in the theory of relational databases [10].

Functional dependencies are not the only possible use of the
constraint mechanism; for example, it could also be used to model
class arities, kind signatures, or Haskell-style superclasses. We
describe two of those applications next.

Arities. We have chosen to bake the arity of classes into the
definition of models. Alternatively, we could have chosen models
over arbitrary sequences of types, with the following structure:

M : ClassName→P(Type∗)

This definition would allow the model of a single class to contain
tuples of various lengths. We could then enforce separate arity
constraints on classes. An arity constraint of the form arity(C) = x
would require that any tuple in the model of C have length x. We
could model this constraint by:

M |= arity(C) = x ⇐⇒ ∀~τ ∈ M(C). length(~τ) = x

Note that, unlike the definition of |= heretofore, this relation ex-
presses a property of all tuples in the model of a class.

Kinds. A similar approach could be used to capture the kind sig-
nature of a type class. Suppose that the type system were equipped
with some set of kinds ranged over by k, and that, for any kind k, the
set Typek ⊆ Type, is all the types of kind k. In this setting, classes
are assigned kind signatures

C : ~k

where the nth element of the kind signature is the kind of the nth

argument to the class. Kind signatures are validated by:

M |= C : ~k ⇐⇒ ∀~τ ∈ M(C). ∀i. τi ∈ Typeki

Programs. We model (the classes and instances of) a program
with a pair A|∆, consisting of a set of axioms A and a set of con-
straints ∆. In ilab, the constraint set will only contain functional
dependencies; however, an application to Haskell or Habit would
include additional constraints such as kind signatures, superclass
constraints, etc. A program is modeled when all of its axioms and
all of its dependencies are modeled:

M |= A|∆ ⇐⇒ (∀α ∈ A.M |= α) ∧ (∀δ ∈ ∆.M |= δ)

These rules are not generative. A given program A|∆ may have
one, many, or no models. A program with conflicting instance

declarations has no models. On the other hand, we do not constrain
predicates that are not mentioned in the program. For example, if
a program contains neither an assertion that C Bool holds nor an
assertion that C Bool fails, then that program could admit (at least)
two models: one in which Bool ∈ M(C) and another in which
Bool /∈ M(C). We say that A|∆ is consistent if it has at least one
model. A predicate π is a theorem of A|∆ if it holds in all models
of the program; that is:

π is a theorem of A|∆ ⇐⇒ (M |= A|∆ =⇒ M |= π)

Informally, a particular implementation of a type-class system
is sound if it proves only theorems and complete if it proves all
theorems. To formalize this, we must formalize our notion of the
implementation of a type-class system.

4.2 Predicates, evidence and proof
The preceding section focusses the meaning of type classes; this
section builds upon Jones’ theory of qualified types to begin de-
scribing their implementation.

Jones [4] describes the extension of the polymorphic λ-calculus
with qualified types. He uses a notion of ‘evidence’ to close the
gap between the qualifiers in a type and their implementation in
a term. For example, the evidence for a type-class predicate Eq
Int is a function that implements the equality check for integers,
while the evidence for a subtype predicate t ⊆ t′ is a function
embedding values of type t into values of type t′. To capture the use
of evidence in computations, Jones extends the term language of the
polymorphic λ-calculus with expressions for evidence abstraction,
application, and construction. For our purposes, we only need to
consider evidence construction; the remainder of Jones’ theory can
be applied to ilab intact.

Jones represents evidence construction with a three-place rela-
tion P  e : π indicating that e is evidence for predicate π, given
evidence for the predicates in P. He assumes a set of base axioms
such as ∅  Eq Int and Eq t  Eq [t]. We will use an alternative
relation A|∆ ` e : π that diverges from his in two ways:

• His set of base axioms corresponds to our model of a program,
so we augment the evidence relation with the program A|∆;
and,

• We will omit the set of assumptions P, as it is trivial to reintro-
duce and will play no further role in our discussion. It would be
valuable for implementing features of Haskell beyond the scope
of this paper, such as existential types or GADTs.

Evidence construction does not precisely model the process of
proving that a predicate exists. There are a number of predicates in
ilab that generate no evidence, such as classes without methods or
negative predicates. However, we do not wish for all negative pred-
icates to be trivially provable simply because their evidence can
always be constructed. Also, evidence construction involves details
that are irrelevant for our purposes, such as the implementations of
class methods. To avoid these difficulties, we will use proof expres-
sions instead of evidence. Proof expressions capture the reasoning
steps made by the deduction algorithm, and there must be a trans-
lation from a proof for a predicate π to evidence for π. Proofs may
also capture details that are not observable from the generated ev-
idence, such as recursion, naming of common subexpressions, etc.
To connect differences in proof expressions to differences in evi-
dence, we introduce a notion of equivalence for proof expressions,
written p ∼= p′. We require that, if p ∼= p′, then the evidence gen-
erated from p is not observably different from the evidence gener-
ated from p′. Note that this relation is one-way; it is not likely that
p ∼= p′ for arbitrary proofs p and p′ that generate observably equiv-
alent evidence. Equivalence is a statement only about the evidence



generated from proofs, not about what they prove; that is:

A|∆ ` p : π ∧ p ∼= p′ 6=⇒ A|∆ ` p′ : π.

Section 5 discusses the details of ilab proof expressions and proof
equivalence.

We will refer to an algorithm for finding p such that A|∆ ` p : π
for given A|∆ and π as a deduction algorithm. The rest of this
section will discuss deduction algorithms in general; Section 5
discusses the particular deduction algorithm implemented in ilab
and the details of its proof expressions.

We can now formalize the notions of soundness and complete-
ness. A deduction algorithm is sound if it only proves predicates
that are theorems:

∃p. A|∆ ` p : π =⇒ π is a theorem of A|∆ (SOUNDNESS)

A deduction algorithm is complete if it can prove any theorem:

π is a theorem of A|∆ =⇒ ∃p. A|∆ ` p : π
(COMPLETENESS)

Soundness is an essential property of type-class systems because
it connects the implementation to the programmer’s model of
type classes. We can ensure completeness with sufficient syntac-
tic restrictions on class and instance declarations: for example,
Haskell 98’s type-class system is complete. However, these syntac-
tic restrictions make expressing many type-class programs difficult
or impossible. Alternatively, some implementations use pragmatic
measures to ensure termination, such as a (programmer-adjustable)
limit to the total number of deduction steps. In ilab, we make no
effort to ensure completeness or termination, ensuring greater ex-
pressiveness as a result. We hope to return to this issue in future
work, and find a set of restrictions that ensure completeness while
allowing more programs than are allowed by other class systems.

The evidence generated from a deduction algorithm is used in
translating programs with type classes. If the deduction algorithm
could generate different evidence to prove the same predicate, then
the translated program could have multiple meanings. To avoid this
incoherence, any two pieces of evidence generated for the same
predicate must be semantically indistinguishable, a property Jones
calls Uniqueness of Evidence [5]. The notion of evidence being
semantically indistinguishable corresponds to proof equivalence,
so we restate this for our purposes as Equivalence of Proof:

A|∆ ` p : π ∧ A|∆ ` p′ : π =⇒ p ∼= p′ (EOP)

ilab type classes are open: new axioms or constraints may be
added to existing programs, adding to or refining the meaning of
classes. To formalize this, we call a program A∗|∆∗ an extension
of program A|∆ if:

1. A|∆ and A∗|∆∗ are consistent; and,

2. A ⊆ A∗ and ∆ ⊆ ∆∗.

Our definition differs from the standard definition of extension in
logic in that we require that the exact axioms from A be included
in A∗, not just that A∗|∆∗ prove all the theorems of A|∆. As a
consequence, we might hope that, if a predicate is a theorem in
both programs, then the proofs in each program will be equivalent.
We call this property Stability of Proofs:

A|∆ ` p : π ∧ A∗|∆∗ ` p′ : π =⇒ p ∼= p′ (SOP)

Because the Haskell 98 class system permits no overlap between
instances, its proofs are stable. Overlapping instances preclude
stable proofs: when more specific overlapping instances are added,
the proofs of some predicates will change to use the new instances.
By restricting overlap to instance chains, ilab restores stability
while still allowing many of the programs that could be written
using overlapping instances.

We will discuss proofs of ilab’s properties following the dis-
cussion of the ilab deduction algorithm in Section 5.

4.3 Application to other type-class systems
As ilab’s extensions to the type-class mechanism could be applied
to other languages, the techniques used in the previous subsections
to model type classes and to reason about type-class implementa-
tions could be applied to other languages, other implementations of
Habit, or other type-class systems.

Among the goals of ilab was to avoid the complexity of over-
lapping instances; by applying our modeling techniques to over-
lapping instances, we can see to what extent we achieved our goal.
Overlapping instances are not as modular as ilab’s axioms: to de-
termine whether an axiom applies to a predicate, we must deter-
mine whether it is the most specific axiom that matches the pred-
icate. Making this determination requires knowing the axioms in
the remainder of the program, so it would not be possible to de-
fine the meaning of an axiom without the remainder of the pro-
gram as context. Overlapping instances also preclude the stability
of proofs: because a program can be extended with more specific
axioms, the proofs of theorems of the original program may change
in the extension. While we expected that making implicit aspects of
overlapping instances explicit would reduce complexity from the
beginning of the ilab design process, comparing the models and
properties of ilab with those of systems with overlapping instances
gives a solid basis for this intuition.

5. Mechanics
This section describes our prototype implementation of ilab. The
presentation is divided into two subsections: Section 5.1 discusses
the validation of source axioms and Section 5.2 describes proof
expressions and a deduction algorithm for ilab.

Functional dependencies will play a larger role in this section
than heretofore. Some preliminaries will simplify the remaining
discussion. Section 4 used a set ∆ to refer to all the functional
dependencies in a program. In this section, we will usually only be
interested in the functional dependencies that apply to a particular
predicate, and so will use the following (overloaded) function:

fundeps∆(C) = {X  Y | C : X  Y ∈ ∆} ∪ {N ∅}
fundeps∆(C ~τ f ) = fundeps∆(C)

The set ∆ will be omitted when it is obvious from context. To en-
sure that fundeps∆(C) is never empty, we have added the depen-
dency N ∅ to the functional dependencies for any class. This de-
pendency treats all positions as determining, so it will give the be-
havior expected were there no functional dependencies at all. Later
rules will be able to assume that all classes have at least one func-
tional dependency constraint. Of course, any relation satisfies the
dependency N  ∅, so adding it does not affect the modeling of
programs.

When considering predicates and functional dependencies, it
is useful to consider the predicates without including any of the
parameters that are determined by the functional dependency. For
instance, to know whether the instances

instance Eq t ⇒ Elems [t] t
instance Elems [Int] Char

overlap, it is not enough to unify Elems [t] t with Elems [Int]
Char. Rather, we must take the functional dependency for Elems
into account, and attempt to unify Elems [t] with Elems [Int],
which succeeds, in this particular case, showing that the instances
do overlap. We can generalize this idea to any relation on predicates
R and index set Y by writing πRπ′ mod Y to indicate the result of
πRπ′ without considering the elements indexed by Y . Formally, we



define

(C ~τ f )R(C′ ~υ f ′) mod Y ⇐⇒ (C (~τ |N\Y) f )R(C (~υ|N\Y) f ′).

The name of this operation is chosen by analogy with modular
arithmetic: as arithmetic modulo x does not consider powers of x,
so operations modulo the index set Y do not consider the elements
indexed by Y .

5.1 Validation
There are two tasks in validating ilab axioms: ensuring that there
are no overlaps, and checking that the relevant functional depen-
dencies are respected.

To determine whether two instances overlap, we apply a vari-
ation of the scheme used in Haskell 98. We say that two instance
clauses ∀~x. P⇒ π and ∀~y. P′ ⇒ π′ overlap if

∃(X  Y) ∈ fundeps(π). ∃U. dom(U) ⊆ ~x ∪~y

∧ (π
U∼ π′ mod Y ∨ π U∼ π′ mod Y)

where we write π U∼ π′ to indicate that U is the most general unifier
of π and π′. Note that if π and π′ mention the same class name C,
then fundeps(π) = fundeps(C) = fundeps(π′). Otherwise, π
and π′ cannot unify, so the choice to quantify over fundeps(π)
is irrelevant. Our definition of overlap differs from the Haskell
definition in two ways. First, ilab axioms have explicit quantifiers,
whereas all free type variables in Haskell axioms are implicitly
quantified. Second, we take account of the various ways in which
predicates can contradict each other. Predicates may overlap if their
flags disagree (having proofs that both C~τ holds and C~τ fails would
be difficult to model, even though the two predicates do not unify).
Predicates may also overlap even if they differ in the determined
parameters of some functional dependency, as in the example of
Elems [t] t and Elems [Int] Char.

Two axioms α and α′ overlap if some clause from α overlaps
some clause from α′. This is as strict as the Haskell 98 restriction
on overlap; however, because clauses within a single instance chain
are free to overlap, ilab still offers greater expressivity.

The overlap check is not enough to ensure that instances do
not violate functional dependencies; we must also ensure that any
quantified variables in determined positions are actually deter-
mined. To do this, we make use of the theory of functional de-
pendencies [7, 10].

Let TV(π) be all the free type variables mentioned in the type
tuple of predicate π. The induced functional dependencies, Fπ , of
a predicate π are the dependencies

{TV(π|X) TV(π|Y) | X  Y ∈ fundeps(π)}
Note that, unlike the class constraints, these are functional depen-
dencies over sets of type variables, not over index sets. By exten-
sion, for a context P, let FP be the union of the induced functional
dependencies for each predicate π ∈ P.

The closure of a set J with respect to a set of functional depen-
dencies F, written J+

F is intuitively the set of all elements deter-
minable from J using the functional dependencies in F. Formally,
we define J+

F as the smallest set such that:

1. J ⊆ J+
F ; and,

2. if X  Y ∈ F and X ⊆ J+
F , then Y ⊆ J+

F .

Now, consider an instance clause ∀~x. P ⇒ C ~τ f . We can ensure
that all variables in ~τ are properly determined if:

∀X  Y ∈ fundeps(C). TV(~τ |Y) ⊆ (TV(~τ |X))+
FP
.

We require that all clauses in ilab instance chains pass this check.
In previous work on type classes and functional dependen-

cies [7, 17], the process of validating instances against functional

dependencies is broken into multiple independent checks. The
“consistency” check is incorporated into ilab’s expanded over-
lap check. The “covering” check is implemented as described in
the last few paragraphs.

A final note: while a functional dependency does not inherently
include or exclude any tuples from a class, each tuple in a class
with a dependency excludes all other tuples that would violate
the dependency. This can create multiple avenues to prove that
a tuple is excluded from a class: either via a negative axiom, or
via a (non-overlapping) positive axiom combined with a functional
dependency. Luckily, as these proofs generate the same evidence,
we can allow both without jeopardizing Equivalence of Proofs.

5.2 Solving
This section describes the inference algorithm used to prove predi-
cates in ilab. Intuitively, to prove a predicate π, we try each of the
available axioms in sequence. At each step, we compare the current
axiom (∀~x. P ⇒ π′) ; α to the target predicate π. There are three
cases in which we might be able to prove π: either π and π′ do not
match, so the current clause cannot apply to π, but we can prove
π from α; or π and π′ match but we can disprove one of the pre-
conditions in P and prove π from α; or π and π′ match and we can
prove the preconditions.

This intuition is somewhat complicated by the presence of func-
tional dependencies. Recall the Elems class from Section 2.1 and
suppose we are trying to prove Elems T U for some types T and U.
If we can prove Elems T U' for some type U'6=U, then the func-
tional dependency assures us that we will not be able to prove
Elems T U. Similarly, if we are trying to prove that Elems T U
fails and can prove that Elems T U' holds, then the functional de-
pendency assures us that Elems T U fails.

Before formally describing the ilab deduction algorithm, we
will describe its proof expressions. The structure of ilab proof
expressions matches the possible reasoning steps mentioned above.
To avoid noise, our proof expressions omit steps in which the
current axiom does not match the target predicate. Let n range
over some countably infinite source of names. We assume that each
axiom clause has a unique identifying name (because these are an
artifact of the proof expressions, they would not need to be provided
by the programmer), and so we will use the following syntax for
axiom schemes:

α ::= (n : ∀~x. P⇒ π) ; α Axiom schemes

This differs from the previous syntax only by adding the name n;
because names are irrelevant outside construction of proof expres-
sions, this change does not affect the other sections of this paper.

A predicate is usually proved because it matches some axiom
clause and the preconditions of that axiom are provable. We de-
scribe this case with the proof expression n(~p) where n is the name
of the axiom clause that matched, and ~p are the proofs of that
clause’s preconditions. Alternatively, as discussed above, a nega-
tive predicate C ~τ fails may be proven by proving some C ~υ holds
such that for some functional dependency, ~τ and ~υ agree on the de-
termining parameters but disagree on the determined. We capture
this case with the proof expression exclp where p is the proof of the
excluding predicate. Finally, axioms that match the target predicate
may not apply because their preconditions can be contradicted. We
capture that with the proof expression [n, i, p]p′ where n identifies
the axiom being skipped, i is the index of the contradicted precon-
dition, p is the proof expression for the contradiction, and p′ is the
remainder of the proof.

Intuitively, only the positive portion of the proof contributes
to the construction of evidence, so we can define equivalence for
ilab proofs inductively by ignoring skip steps. Additionally as
mentioned in the last section, it may be possible to prove some



S π′ = π ∀i. A ` pi : S Pi

((n : ∀~x. P⇒ π′) ; α) ` n(~pi) : π
(MATCH)

∃(X  Y) ∈ fundeps(π). S π′ = π mod Y
S π′ 6= π ∀i. A ` pi : S Pi π is negative

((n : ∀~x. P⇒ π′) ; α) ` excl n(~pi) : π
(MATCH-EXCL)

∃(X  Y) ∈ fundeps(π). S π′ = π mod Y
∃i. A ` pi : S Pi α ` p : π

((n : ∀~x. P⇒ π′) ; α) ` [n, i, pi]p : π
(STEP-CONTRA)

∀(X  Y) ∈ fundeps(π).(π′ � π mod Y ∧ π′ � π mod Y)
α ` p : π π′ is positive

((n : ∀~x. P⇒ π′) ; α) ` p : π
(STEP-POS)

π′ � π π′ � π α ` p : π π′ is negative
((n : ∀~x. P⇒ π′) ; α) ` p : π

(STEP-NEG)

Figure 2. The ilab deduction system

predicates either via a negative axiom or via exclusion by a (non-
overlapping) positive axiom. To account for this, we make excl p
equivalent to any other proof. Equivalence for ilab proofs is given
by the following assertions:

p = q =⇒ p ∼= q

p ∼= q =⇒ [n, i, p′]p ∼= [n, i′, q′]q

excl p ∼= p′

We can prove a predicate from an axiom set if we can prove it
from some axiom in the set:

∃α ∈ A. α ` p : π

A,∆ ` p : π

Because ilab prohibits overlap between clauses in separate in-
stance chains, there cannot be more than one axiom in the set that
matches a given predicate, let alone more than one that proves it.

The deduction rules for α ` p : π are given in Figure 2.
We continue to use the fundeps(π) shorthand instead of passing
the constraint set ∆ in to all the inference rules. We also omit
the regular side condition that substitutions must only mention the
quantified variables.

Rule MATCH is intuitive: if an axiom matches the target predi-
cate, and we can prove the preconditions of the axiom, then we can
prove the predicate.

Rule STEP-CONTRA is similarly intuitive. In a regular pattern,
we require only that the axiom and rule match modulo (the deter-
mining parameters of) some functional dependency.

Rule MATCH-EXCL captures the case where we can prove a
negative predicate by showing a positive predicate that agrees mod-
ulo a functional dependency. We gave an example of this case at the
beginning of this section.

Finally, there are two rules for skipping an axiom because it
does not match the target predicate. The positive version (STEP-
POS) makes the usual allowance for functional dependencies. The
negative version (STEP-NEG) does not need to make this allowance
because a negative predicate cannot be excluded by functional
dependencies.

5.3 Properties of the ilab deduction algorithm
Section 4.2 describes several properties of deduction algorithms.
We are currently developing formal proofs of those properties for
ilab; we sketch some of them in this section.

Equivalence and Stability of Proofs are relatively easy to es-
tablish because ilab does not allow instances to overlap. To gen-
erate two inequivalent proofs of the same predicate would require
two different axiom clauses that both unify with the predicate be-
ing proved. Were these clauses in separate axioms, ilab would re-
ject the axioms as overlapping. Were they in the same clause, they
would be ordered such that, once the first (whichever it happened

to be) applied, ilab would not proceed to the second. A similar
argument shows stability of ilab proofs.

The proof of soundness is along the same lines. If a set of
axioms are valid, then none of the conclusions of the clauses in one
axiom overlap the conclusions of the other axioms. As a result, the
only sources of unsoundness must originate within a single axiom.
However, ilab will prove at most one conclusion from any single
axiom. This rules out all sources of unsoundness.

In this work, we have focussed on expressiveness of ilab at the
cost of formal termination or completeness properties. We imagine
that an approach similar to the one taken by Volpano and Smith [19]
to show the undecidability of ML typeability with overloading
could be applied to the ilab deduction algorithm. We hope to
return to issues of completeness and termination in future work.

6. Related work
Although they have been implemented in both Haskell and other
languages, such as BitC [15], overlapping instances do not appear
to have received much attention in prior research. Peyton Jones
et al. [13] consider some of the issues with overlapping instances
and other features of Haskell current at the time, such as context
reduction. However, as the combination of functional dependencies
and type classes had not yet been proposed, they do not anticipate
many of the interactions that motivated the work in this paper.

The use of overlapping instances is not quite as sparse. We have
already discussed Swierstra’s [18] use of overlapping instances.
Kiselyov et al. [9] use overlapping instances and functional depen-
dencies to define a library for heterogeneous lists in Haskell, and
Kiselyov and Lämmel [8] take a similar approach in defining an
object system in Haskell. In both cases, the authors find ways to
avoid overlapping instances, but at the cost of additional code com-
plexity. The Hackage collection of Haskell libraries also includes a
number of examples that use overlapping instances.

Heeren and Hage [3] describe a technique for providing addi-
tional information to the type checker in the form of type-class di-
rectives, specified separately from the Haskell source code. While
specifying type-class directives separately allows them to be ap-
plied to existing Haskell code, it also limits their usability. In par-
ticular, while they can specify that a particular predicate is excluded
from a class, or that a class is closed, they cannot use that informa-
tion in an instance precondition or qualified type. Their directives
do include some of the uses of explicit exclusion, such as closing
classes or ensuring that classes are disjoint.

Maier [10] summarizes the theory of functional dependencies as
used in the database community. Jones [6] originally proposed the
use of functional dependencies in type-class systems. Hallgren [2]
describes some uses of functional dependencies for type-level com-
putation, which we used for examples in Section 2.2.1. Alternative
notation for functional dependencies was discussed by Neubauer et
al. [12] and by Jones and Diatchki [7].



Sulzmann et al. [17] describe an alternative approach to imple-
menting functional dependencies. In the course of describing their
implementation, they establish properties of classes with functional
dependencies to make type inference sound, complete, and termi-
nating but do not discuss the soundness of the class system directly.
They also do not consider the interaction between overlapping in-
stances and functional dependencies. Later work by Schrijvers et
al. [14] proposes an alternative to functional dependencies called
type functions and describes an implementation. They explicitly
exclude any overlap between type functions.

7. Conclusion and future work
This paper has explored a new type-class feature, instance chains.
We have motivated its development from existing Haskell type-
level programming, and demonstrated how type-level program-
ming can be simplified and enhanced with instance chains. We have
described a semantic framework for reasoning about type classes
and their implementations, showed how we can model a type class
system with instance chains and functional dependencies, and pre-
sented a deduction algorithm for such a type system. There is also
significant opportunity for future work in this area; we outline some
possibilities next.

Overlap check. The overlap check as implemented in ilab is sig-
nificantly more restrictive than it needs to be. As discussed in Sec-
tion 2.2.1, the preconditions of instances may prevent them from
applying to the same predicate. We would like to improve the ilab
overlap check so that it takes account of semantic overlap—that is,
when two axioms actually cover the same cases—as opposed to the
purely syntactic notions of overlap used in this paper. To do so, we
will need to determine not just when the hypotheses of two axioms
contradict, but also when the possible conclusions of two hypothe-
ses contradict—a potentially expensive search. We hope to apply
existing refutation methods to limit this search.

Default implementations. We have discussed coding alternatives
using overlapping instances at some length; another use of overlap-
ping instances in existing Haskell code, particularly serialization
and generic programming libraries, is to provide default implemen-
tations of classes while allowing type-specific implementations to
be defined later. We have developed a pattern that encodes default
implementations using instance chains instead of overlapping in-
stances. We anticipate testing this pattern against examples of de-
fault instances, and hope to report on the results in the future.

Greatest and least models. Section 4 effectively uses the least
model of a set of instances to determine its consequences. As it
includes failure and functional dependencies, the greatest model
of a set of ilab instances, unlike in Haskell 98, need not include
all predicates. We hope that further study of greatest models will
inform alternative approaches to recursive instances and the termi-
nation and completeness of deduction algorithms.

Integration into Habit. As discussed in Section 3, the develop-
ment of ilab was an intermediate step in the development of a di-
alect of Haskell called Habit. Habit includes many features omitted
by ilab, including Haskell-style superclasses, type-level naturals,
explicit representation of binary formats, etc. We hope to extend the
techniques used in the modeling and implementation of ilab in de-
veloping the Habit type-class system. We are also interested to see
how features like type-level naturals affect the ilab type-class sys-
tem, and how much we can implement using ilab features without
baking operations into the compiler. We also believe that instance
chains would be a valuable addition to Haskell, or to other Haskell
dialects besides Habit.

Acknowledgements. We would like to thank Tim Chevalier,
James Hook, Justin Bailey, Andrew Tolmach, and the rest of the
HASP group for comments and suggestions on drafts of this paper.

References
[1] I. S. Diatchki and M. P. Jones. Strongly typed memory areas: pro-

gramming systems-level data structures in a functional language. In
Haskell ’06, pages 72–83, New York, NY, USA, 2006. ACM.

[2] T. Hallgren. Fun with functional dependencies, or (draft) types as
values in static computations in Haskell. In Proc. of the Joint CS/CE
Winter Meeting, 2001.

[3] B. Heeren and J. Hage. Type class directives. In PADL ’05, pages
253–267. Springer-Verlag, 2005.

[4] M. P. Jones. A theory of qualified types. In B. K. Bruckner, editor,
ESOP ’92, volume 582. Springer-Verlag, London, UK, 1992.

[5] M. P. Jones. Qualified Types: Theory and Practice. Cambridge
University Press, 1994.

[6] M. P. Jones. Type classes with functional dependencies. In ESOP
2000, pages 230–244, London, UK, 2000. Springer-Verlag.

[7] M. P. Jones and I. S. Diatchki. Language and program design for
functional dependencies. In Haskell Symp., pages 87–98, New York,
NY, USA, 2008. ACM.

[8] O. Kiselyov and R. Lämmel. Haskell’s overlooked object system.
Draft; Submitted for publication; online since 10 Sept. 2005.

[9] O. Kiselyov, R. Lämmel, and K. Schupke. Strongly typed heteroge-
neous collections. In Haskell ’04, pages 96–107. ACM Press, 2004.

[10] D. Maier. The Theory of Relational Databases. Computer Science
Press, 1983.

[11] J. G. Morris. Experience report: Using Hackage to inform language
design. In Haskell ’10, New York, NY, USA, 2010. ACM.

[12] M. Neubauer, P. Thiemann, M. Gasbichler, and M. Sperber. A func-
tional notation for functional dependencies. In Haskell ’01, Firenze,
Italy, September 2001.

[13] S. Peyton Jones, M. P. Jones, and E. Meijer. Type classes: an explo-
ration of the design space. In Haskell ’97, June 1997.

[14] T. Schrijvers, S. Peyton Jones, M. Chakravarty, and M. Sulzmann.
Type checking with open type functions. In IFCP ’08, pages 51–62,
New York, NY, USA, 2008. ACM.

[15] J. Shapiro, S. Sridhar, and S. Doerrie. BitC (0.11 transitional) language
specification. http://www.bitc-lang.org/docs/bitc/spec.html.
Last accessed June 15, 2010.

[16] D. Steinitz. Exporting a type class for type signatures. http:
//www.haskell.org/pipermail/haskell-cafe/2008-November/
050409.html, November 2008.

[17] M. Sulzmann, G. J. Duck, S. Peyton Jones, and P. J. Stuckey. Under-
standing functional dependencies via constraint handling rules. JFP,
17(1):83–129, 2007.

[18] W. Swierstra. Data types à la carte. JFP, 18(04):423–436, 2008.
[19] D. M. Volpano and G. S. Smith. On the complexity of ML typeability

with overloading. In FPCA ’91, pages 15–28, New York, NY, USA,
1991. Springer-Verlag.

[20] P. Wadler. The expression problem. http://homepages.inf.ed.ac.
uk/wadler/papers/expression/expression.txt, 1998.

[21] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad
hoc. In POPL ’89, pages 60–76, New York, NY, USA, 1989. ACM.


