
A Semantics for Propositions as Sessions

Sam Lindley and J. Garrett Morris

The University of Edinburgh
{Sam.Lindley,Garrett.Morris}@ed.ac.uk

Abstract. Session types provide a static guarantee that concurrent pro-
grams respect communication protocols. Recently, Caires, Pfenning, and
Toninho, and Wadler, have developed a correspondence between proposi-
tions of linear logic and session typed π-calculus processes. We relate the
cut-elimination semantics of this approach to an operational semantics
for session-typed concurrency in a functional language. We begin by pre-
senting a variant of Wadler’s session-typed core functional language, GV.
We give a small-step operational semantics for GV. We develop a suitable
notion of deadlock, based on existing approaches for capturing deadlock
in π-calculus, and show that all well-typed GV programs are deadlock-
free, deterministic, and terminating. We relate GV to linear logic by
giving translations between GV and CP, a process calculus with a type
system and semantics based on classical linear logic. We prove that both
directions of our translation preserve reduction; previous translations
from GV to CP, in contrast, failed to preserve β-reduction. Furthermore,
to demonstrate the modularity of our approach, we define two extensions
of GV which preserve deadlock-freedom, determinism, and termination.

1 Introduction

From massively distributed programs running across entire data centres, to hand-
held apps reliant on remote services for functionality, concurrency has become
a critical aspect of modern programs, and thus a central problem in program
correctness. Assuring correct concurrent behaviour requires reasoning not just
about the types of data communicated, but the order in which the communica-
tion takes place. For example, the messages between an SMTP client and server
are all strings, but a client that sends the recipient’s address before the sender’s
address is in violation of the protocol despite sending the correct type of data.

Session types, originally proposed by Honda [13], provide a mechanism to
reason about the state of channel-based communication. The type of a channel
captures the expected behaviour of a process communicating on that channel.
For example, we might express a simplified session type for an SMTP client as:

!FromAddress.!ToAddress.!Message.end

where !T .S is the type of a channel that sends a value of type T , then continues
with behaviour specified by S . An important feature of session types is duality:
the session type of an SMTP server is the dual of the session type of the client:

?FromAddress.?ToAddress.?Message.end

where ?T .S is the type of a channel that sends a value of type T , then con-
tinues with behaviour specified by S . Honda originally defined session types for
process calculi; recent work [10, 25] has investigated the use of session types for
concurrency in functional languages.

Session type systems are necessarily substructural—if processes can freely
discard or duplicate channels, then the type system cannot guarantee that ob-
servable messages on channels match their expected types. Recent work seeks to
establish a correspondence between session types and linear logic, an archetypal
substructural logic for reasoning about state. Caires and Pfenning [5] develop a
correspondence between cut elimination in intuitionistic linear logic and process
reduction in a session-typed process calculus. Wadler [26] adapts their approach
to classical linear logic, emphasising the role of duality in typing; the semantics
of his system is given directly by the cut elimination rules of classical linear logic.
He gives a type-preserving translation from a simple functional calculus (GV),
inspired by Gay and Vasconcelos [10], to a process calculus (CP), inspired by
Caires and Pfenning [5]. However, he gives no semantics for GV other than by
translation to CP.

In this paper, we develop a session-typed functional core calculus, also called
GV. (Our language shares most of the distinctive features of Wadler’s, although
it differs in some details.) We present a small-step operational semantics for
GV, factored into functional and concurrent portions following the approach of
Gay and Vasconcelos [10]. The functional portion of our semantics differs from
standard presentations of call-by-value reduction only in that we adopt a weak
form of explicit substitution to enable a direct correspondence with cut reduc-
tion. The concurrent portion of our semantics includes the typical reductions
and equivalences of π-calculus-like process calculi.

Ultimately, our goal is to build and reason about functional programming
languages extended with session types. Thus GV is a natural fit. Indeed, we
are currently implementing an asynchronous variant of GV as part of the Links
web programming language [8]. Developing a direct semantics for GV provides
a number of benefits over relying on the translation to CP.

– It provides a simple semantic characterisation of deadlock. Unlike Wadler’s
proof of deadlock freedom, ours does not depend on normalisation, and thus
extends to non-terminating processes.

– The proof technique itself is modular: as illustrated by the extensions, the
same technique can be applied to practical (sometimes non-logical) exten-
sions of the language.

– Compared to cut-elimination in CP, the GV semantics is much closer to
something one might actually want to implement in practice, as witnessed
by our Links implementation.

We believe in modularity, and so re-use as much of the standard linear lambda
calculus machinery as possible, while limiting non-standard extensions. The pa-
per proceeds as follows.

– We define a core linearly-typed functional language, GV, by extending lin-
ear lambda calculus with session-typed communication primitives (§2.1).

Session types S ::= !T .S | ?T .S | end! | end? | S]
Types T ,U ::= S | 1 | T ×U | 0 | T + U | T (U
Terms L,M ,N ::= x | K M | λx .M | M N

| (M ,N) | let (x , y) = M in N
| inlM | inrM | case M {inl x 7→ N ; inr x 7→ N }
| () | let () = M in N | absurdM

Constants K ::= send | receive | fork | wait | link

Fig. 1: Syntax of GV Terms and Types

We present an (untyped) synchronous operational semantics for GV (§2.2).
We characterise deadlock and normal forms; we show that typed terms are
deadlock-free, that closed typed terms evaluate to normal forms (§2.3), and
that evaluation is deterministic and terminating (§2.4).

– We connect GV to the interpretation of session types as linear logic propo-
sitions, by establishing a correspondence between the semantics of GV and
that of CP. We begin by introducing CP (§3.1). We show that we can sim-
ulate CP reduction in GV (§3.2), and GV reduction in CP (§3.3). (As π-
calculus-like process calculi provide substitution only for names, not entire
process expressions, the latter depends crucially on the use of weak explicit
substitutions in the semantics of GV lambda abstractions.)

– We consider two extensions of GV: one which has a single self-dual type for
closed channels, harmonising the treatment of closed channels with that of
other session-typed calculi (§4.1), and another which adds unlimited types
and replicated behaviour (§4.2). We show that these extensions preserve the
essential meta theoretic properties of the core language.

We conclude by discussing related (§5) and future (§6) work.

2 A Session-Typed Functional Language

2.1 Syntax and Typing

Figure 1 gives the syntax of GV types and terms. The types T include nullary
(0) and binary (T + U) linear sums, nullary (1) and binary (T × U) linear
products, and linear implication (T (U). We frequently write M ; N as the
elimination form of 1 in place of the more verbose let () = M in N . Session types
S include input (?T .S), output (!T .S), and closed channels (end!, end?). We also
include a type S] of channels; values of channel type cannot be used directly in
terms, but will appear in the typing of thread configurations. The terms are
the standard λ-calculus terms, augmented with constructs for pairs and sums.
Figure 2 gives both typing rules and type schemas for the constants. Note that
core GV judgements are linear, i.e., not subject to weakening or contraction.

Concurrency. Concurrent behaviour is provided by the constants. Communi-
cation is provided by send and receive. For example (assuming an extension of

Typing rules

T 6= S]

x : T ` x : T

K : T (U Γ ` M : T

Γ ` K M : U

Γ, x : T ` M : U

Γ ` λx .M : T (U

Γ ` M : T (U Γ ′ ` N : T

Γ, Γ ′ ` M N : U

Γ ` M : T Γ ′ ` N : U

Γ, Γ ′ ` (M ,N) : T ×U

Γ ` M : T × T ′ Γ ′, x : T , y : T ′ ` N : U

Γ, Γ ′ ` let (x , y) = M in N : U

Γ ` M : T

Γ ` inlM : T + U

Γ ` M : T + T ′ Γ ′, x : T ` N : U Γ ′, x : T ′ ` N ′ : U

Γ, Γ ′ ` case M {inl x 7→ N ; inr x 7→ N ′} : U

` () : 1

Γ ` M : 1 Γ ′ ` N : T

Γ, Γ ′ ` let () = M in N : T

Γ ` M : 0

Γ, Γ ′ ` absurdM : T

Type schemas for constants

send : T × !T .S (S receive : ?T .S (T × S fork : (S (end!)(S

wait : end? (1 link : S × S (end!

Duality

!T .S = ?T .S ?T .S = !T .S end! = end? end? = end!

Fig. 2: GV Typing Rules

our core language with numbers and arithmetic operators), a program M that
receives a pair of numbers along channel z and then sends their sum along the
same channel can be expressed as

M , let ((x , y), z) = receive z in send (x + y , z)

(where the interpretation of nested patterns by sequences of bindings is stan-
dard). Channels are treated linearly in GV. Thus, receive returns not only the
received value (the pair of x and y) but also a new copy of the channel used
for receiving z ; similarly, send returns a copy of the channel used for sending.
Thus, the term above is well-typed in the context z : ?(Int × Int).!Int .S , and
evaluates to a channel of type S . Session initiation is provided by fork. If f is
a function from a channel of type S to a closed channel (of type end!), then
fork f forks a new thread in which f is applied to a fresh channel of type S ,
and returns a channel of type S in order to communicate with the thread. For
example, the term fork (λz .M) returns a channel of type !(Int × Int).?Int .end?.
Given a thread created by fork f , the channel returned from f is closed by fork,
whereas the other end of the channel must be closed by calling wait. A client of

the process M can be defined as follows:

N , let z = send ((6, 7), z) in let (x , z) = receive z in wait z ; x

The combined process let x = fork (λz .M) in N evaluates to 13. The expression
link (x , y) forwards messages sent on x to be received on y and vice versa. We
choose to include it as a primitive as it corresponds to the axiom rule of linear
logic, which is standard in logical accounts of session types.

Choice. In addition to input and output, typical session type systems also
provide session types representing internal (S1 ⊕ S2) and external (S1 N S2)
choice (also known as selection and branching, respectively). For example, we
might write a process that can either sum two numbers or negate one:

offer z { inl z 7→ let ((x , y), z) = receive z in send (x + y , z)
inr z 7→ let (x , z) = receive z in send (−x , z) }

This term initially requires z : (?(Int × Int).!Int .S) N (?Int .!Int .S). A client of
this process begins by choosing which branch of the session to take; for example,
we can extend the preceding example as follows:

let z = select inl z in let z = send ((6, 7), z) in let (x , z) = receive z in wait z ; x

While we would expect a surface language to include selection and branching,
we omit them from our core calculus. Instead, we show that they are macro-
expressible using the linear sum type. The intuition is that selection is imple-
mented by sending a suitably tagged process, while branching is implemented
by a term-level branch on a received value. Concretely, we define the types by:

S1 ⊕ S2 , !(S1 + S2).end! S1 N S2 , ?(S1 + S2).end?

Note that we have the expected duality relationship: S1 ⊕ S2 = S1 N S2. We
implement select and offer as follows (where ` ranges over {inl, inr}):

select `M , fork(λx .send (` x ,M))

offer M {inl x 7→ P ; inr x 7→ Q} , let (x , y) = receive M in
wait y ; case x {inl x 7→ P ; inr x 7→ Q}

Correspondingly, nullary choice and selection are encoded using the 0 type:

⊕{} , !0.end! N {} , ?0.end?

offer M {} , let (x , y) = receive M in wait y ; absurd{}

2.2 Semantics

Following Gay and Vasconcelos [10], we factor the semantics of GV into a (de-
terministic) reduction relation on terms (called −→V) and a (non-deterministic)
reduction on configurations of processes (called −→). Figure 3 gives the syntax
of values, configurations, and evaluation and configuration contexts.

Values V ,W ::= x | λσx .M
| () | (V ,W) | inlV | inrV

Substitutions σ ::= {V1/x1, . . . ,Vn/xn}
where the xi are pairwise distinct

Evaluation contexts E ::= [] | E M | V E | K E | let () = E in M
| (E ,M) | (V ,E) | let (x , y) = E in M
| inlE | inrE | case E {inl x 7→ N ; inr x 7→ N ′}

F ::= φE
Configurations C ,D ::= φM | C ‖ C ′ | (νx)C
Configuration contexts G ::= [] | G ‖ C | (νx)G
Flags φ ::= ◦ | •

Fig. 3: Syntax of Values, Configurations, and Contexts

Terms. To preserve a close connection between the semantics of our term lan-
guage and cut-reduction in linear logic, we define term reduction using weak
explicit substitutions [18]. In this approach, we intercept substitutions at λ-
terms rather than immediately applying them to the body of the term. Thus,
our language of terms includes closures λσx .M , where σ provides the intercepted
substitution. We extend the typing judgement to include closures, as follows:

Γ, x : T ` Mσ : U dom(σ) = (fv(M) \ {x})
Γ ` λσx .M : T (U

The free variables of a closure λσx .M are the free variables of the range of
σ, not the free variables of M . The capture avoiding substitution Mσ of σ
applied to M is defined as usual on the free variables of M . Note that the side
condition on the domain of σ is preserved under substitution. We implicitly
treat plain lambda abstractions λx .M as closures λσx .M , where σ is a renaming
substitution restricted to the free variables of M less {x}; concretely:

λx .M , λσx .(Mσ′)
where fv(M) \ {x} = {x1, . . . , xn} y1, . . . , yn are fresh variables

σ = {x1/y1, . . . , xn/yn} σ′ = {y1/x1, . . . , yn/xn}

We lift the typing judgement on terms pointwise to substitutions:

Γ1 ` σ(x1) : ∆(x1) · · ·Γk ` σ(xk) : ∆(xk) dom(σ) = dom(∆)

Γ1, . . . , Γk ` σ : ∆

Configurations. The grammar of configurations includes the usual π-calculus
forms for composition and name restriction. However, because functional com-
putations return values (which may, in turn, contain channels), we distinguish
between the “main” thread •M (which returns a value) and the threads ◦M
created by fork (which do not).

Term reduction

(λσx .M)V −→V M ({V /x}] σ)
();M −→V M

let (x , y) = (V ,V ′) in M −→V M {V /x ,V ′/y}
case (inlV) {inl x 7→ N ; inr x 7→ N ′} −→V N {V /x}

E [M] −→V E [M ′] if M −→V M ′

Configuration equivalence

F [link (x , y)] ≡ F [link (y , x)] C ‖ D ≡ D ‖ C C ‖ (D ‖ E) ≡ (C ‖ D) ‖ E

C ‖ (νx)D ≡ (νx)(C ‖ D) if x 6∈ fv(C) G[C] ≡ G[D] if C ≡ D

Configuration reduction

Send

(νx)(F [send (V , x)] ‖ F ′[receive x]) −→ (νx)(F [x] ‖ F ′[(V , x)])

Lift
C −→ C ′

G[C] −→ G[C ′]

Fork
x is a fresh channel name

F [fork (λσy .M)] −→ (νx)(F [x] ‖ M ({x/y}] σ)

Wait

(νx)(F [wait x] ‖ φx) −→ F [()]

Link
x ∈ fv(M)

(νx)(F [link (x , y)] ‖ F ′[M]) −→ (νx)(F [x] ‖ F ′[wait x ;M {y/x}])

LiftV
M −→V M ′

G[M] −→ G[M ′]

Fig. 4: Reduction Rules and Equivalences for Terms and Configurations

Reduction. Reduction rules for terms and configurations, and equivalences for
configurations, are given in Figure 4. Term reduction (−→V) implements call-by-
value, left-to-right evaluation. Configuration equivalence (≡) is standard. Com-
munication is provided by Send and session initiation by Fork. Rule Wait
combines synchronisation of closed channels with garbage collection of the as-
sociated name restriction. Rule Link is complicated by the need to produce a
channel of type end!; the inserted wait synchronises with the produced channel.

Relation Notation. We write R R′ for sequential composition and R ∪ R′ for
union of R and R′. We write R+ for transitive closure and R? for the reflexive,
transitive closure of R.

Configuration Typing. Our syntax of configurations permits various forms of
deadlocked configurations. For example, if we define the terms M and N by

M , let (z , y) = receive y in
let x = send (z , x) in M ′

N , let (z , x) = receive x in
let y = send (z , y) in N ′

Configuration typing

Γ ` M : T T 6= end!

Γ `• •M
Γ ` M : end!

Γ `◦ ◦M
Γ, x : S] `φ C

Γ `φ (νx)C

Γ, x : S `φ C Γ ′, x : S `φ
′
C ′

Γ, Γ ′, x : S] `φ+φ
′
C ‖ C ′

Combination of flags

◦+ ◦ = ◦ ◦+ • = • •+ ◦ = • •+ • undefined

Fig. 5: Configuration Typing

given suitable terms M ′ and N ′, then it is apparent that configurations such as
(νxy)M , (νxy)(M ‖ M) and (νxy)(M ‖ N) cannot reduce further, even though
M and N can be individually well-typed. To exclude such cases, we provide
a type discipline for configurations (Figure 5). It is based on type systems for
linear π-calculus [17], but with two important differences.

– First, we seek to assure that there is at most one main thread. This constraint
is enforced by the flags (• and ◦) on the derivations: a derivation Γ `• C
indicates that configuration C contains the main thread, while Γ `◦ C
indicates that C does not contain the main thread. We write Γ ` C to
abbreviate ∃φ.Γ `φ C , that is, C may include a main thread.

– Second, we require that exactly one channel is shared at each composition
of processes. This is more restrictive than standard type systems for linear
π-calculus, which allow an arbitrary number of channels (including none) to
be shared at a composition of processes.

Notice that the above stuck examples are ill-typed in this system: (νxy)M be-
cause y must have a type S] in M ; (νxy)(M ‖ M) because there is no type
S] such that both S and S are of the form ?T .S ′, as required by receive; and,
(νxy)(M ‖ N) because both x and y must be shared between M and N , but the
typing rule for composition only allows one channel to be shared.

Now we can show that reduction preserves typing. We begin with terms.

Lemma 1. If Γ ` M : T and M −→V M ′, then Γ ` M ′ : T

The proof is by induction on M ; the cases are all standard. We now extend this
result to configurations.

Theorem 2. If Γ ` C and C −→ C ′ then Γ ` C ′.

The proof is by induction on the derivation of C −→ C ′; the cases are given in
Appendix A.

Typing and Configuration Equivalence. Alas, our notion of typing is not
preserved by configuration equivalence. For example, assume that Γ ` (νxy)(C ‖
(D ‖ E)), where x ∈ fv(C), y ∈ fv(D), and x , y ∈ fv(E). We have that C ‖ (D ‖
E) ≡ (C ‖ D) ‖ E , but Γ 0 (νxy)((C ‖ D) ‖ E), as both x and y must be
shared between the processes C ‖ D and E . However, we can show that starting
from a well-typed configuration, we need never rely on an ill-typed equivalent
configuration to expose possible reductions.

Theorem 3. If Γ ` C , C ≡ C ′ and C ′ −→ D ′, then there exists D such that
D ≡ D ′, and Γ ` D.

Proof. Observe that if Γ ` C , then for any pair of terms M1,M2 appearing in
C , there are environments Γ1, Γ2 and types T1,T2 such that Γ1 ` M1 : T1, Γ2 `
M2 : T2, and (because of the typing rule for composition) Γ1 and Γ2 share at
most one variable. By examination of the reduction rules, we can conclude that
there are well-typed C0,D0 such that C ′ = G [C0], C0 −→ D0 and D ′ = G [D0].
The result then follows by structural induction on C , examining the possible
equivalences in each case. ut

We extend Theorem 3 to sequences of reductions, defining =⇒ as (≡−→≡)?.

Corollary 4. If Γ ` C and C =⇒ D, then there exists D ′ such that D ≡ D ′,
and Γ ` D ′.

2.3 Deadlock and its Absence

In the previous section, we saw examples of deadlocked terms which were re-
jected by our type system. We now present a general account of deadlock: we
characterise deadlocked configurations, and show that well-typed configurations
do not evaluate to deadlocked configurations.

We begin by observing that many examples of stuck configurations are al-
ready excluded by existing session-typing disciplines: in particular, those con-
figurations in which either too many or too few threads attempt to synchronise
on a given channel, or those with inconsistent use of channels. The cases of in-
terest to us are those in which the threads individually obey the session-typing
discipline, but the order of synchronisation in the threads creates deadlock. We
say that a thread M is blocked on a channel x , written blocked(x ,M), if M has
evaluated to some context surrounding a communication primitive applied to x :

blocked(x ,M)
def⇐⇒ ∃N .M = E [send (N , x)]∨M = E [receive x]∨M = E [wait x]

In such a case, M can only reduce further in composition with another thread
blocked on x , and any communication on other channels in M will be delayed
until a communication on x has occurred. We abstract over the property that y
depends on x in M , abbreviated depends(x , y ,M); in other words, M is blocked
on x , but has y as one of its (other) free variables. We extend this notion of

dependency from single threads to configurations of threads, with the observa-
tion that in a larger configuration intermediate channels may participate in the
dependency.

depends(x , y ,E [M])
def⇐⇒ blocked(x ,M) ∧ y ∈ fv(E [M])

depends(x , y ,C)
def⇐⇒ (C ≡ G [M] ∧ depends(x , y ,M)) ∨ (C ≡ G [D ‖ D ′]

∧ (∃z .depends(x , z ,D) ∧ depends(z , y ,D ′)))

We now define deadlocked configurations as those with cyclic dependencies:

deadlocked(C)
def⇐⇒ C ≡ G [D ‖ D ′]∧ ∃x , y .depends(x , y ,D)∧ depends(y , x ,D ′)

Because the definition of dependency permits intermediate channels, this defini-
tion encompasses cycles involving an arbitrary number of channels. We say that a
configuration C is deadlock free if, for all D such that C =⇒ D , ¬deadlocked(D).
Observe that if C ≡ D , deadlocked(C) ⇐⇒ deadlocked(D).

At this point, we can observe that in any deadlocked configuration there must
be a composition of configurations that shares more than one channel. This is
precisely the situation that is excluded by our configuration type system.

Lemma 5. If Γ ` C , and C = G [D ‖ D ′], then fv(D)∩ fv(D ′) = {x} for some
variable x .

Proof. By structural induction on the derivation of Γ ` C ; the only interesting
case is for parallel composition, where the desired result is assured by the par-
titioning of the environment. ut

To extend this observation to deadlock freedom, we must take equivalence
into account. While it is true that equivalence need not preserve typing, there
are no equivalence rules that affect the free variables of individual threads. Thus,
cycles of dependent channels are preserved by equivalence.

Lemma 6. If Γ ` C then ¬deadlocked(C).

Proof. By contradiction. Suppose deadlocked(C), then by expanding the def-
inition of deadlocked we know that there must exist variables x1, . . . , xn and
processes M1, . . . ,Mn in C such that:

depends(x1, x2,M1) ∧ depends(x2, x3,M2) ∧ · · · ∧ depends(xn , x1,Mn)

Either n = 1, which violates linearity, or configuration C must partition the
cycle. However, any cut of the cycle is crossed by at least two channels, so C
must be ill-typed by Lemma 5. ut

Finally, we can combine the previous result with preservation of typing to
show that well-typed terms never evaluate to deadlocked configurations.

Theorem 7. If Γ ` M : T , then •M is deadlock-free.

Proof. If Γ ` M : T , then Γ ` •M , and so ¬deadlocked(•M) and, for any
D such that •M =⇒ D , we know that there is a well-typed D ′ ≡ D , and so
¬deadlocked(D). ut

Progress and Canonical Forms. We conclude this section by describing a
canonical form for configurations, and characterising the stuck terms resulting
from the evaluation of well-typed terms. One might hope that evaluation of
a well-typed term would always produce a value; however, this is complicated
because terms may return channels. For a simple example, consider the term:

• fork (λx .let (y , x) = receive x in send (y , x))

This term spawns a thread (which simply echoes once), and then returns the
resulting channel; thus, the result of evaluation is a configuration equivalent to:

(νx)(• x ‖ ◦ let (y , x) = receive x in send (y , x))

Clearly, no more evaluation is possible, even though the configuration still con-
tains blocked threads. However, it turns out that we can show that evaluation of
terms that do not return channels must always produce a value (Corollary 12).

Definition 8. A process C is in canonical form if there is some sequence of
variables x1, . . . , xn−1 and terms M1, . . . ,Mn such that:

C = (νx1)(◦M1 ‖ (νx2)(◦M2 ‖ · · · ‖ (νxn−1)(◦Mn−1 ‖ φMn) . . .))

Note that canonical forms need not be unique. For example, consider the
configuration ` (νxy)(C ‖ D ‖ E) where x ∈ fv(C), y ∈ fv(D), and x , y ∈
fv(E). Both (νx)(C ‖ (νy)(D ‖ E)) and (νy)(D ‖ (νx)(C ‖ E)) are canonical
forms of the original configuration. We can show that any well-typed term must
be equivalent to a term in canonical form; again, the key insight is that captured
by Lemma 5: if any two sub-configurations share at most one channel, then we
can order the threads by the channels they share.

Lemma 9. If Γ ` C , then there is some C ′ ≡ C such that Γ ` C ′ and C ′ is
in canonical form.

The proof is by induction on the count of bound variables; the details are in
Appendix A.

We can now state some progress results. We begin with open configurations:
each thread must be blocked on either a free variable or a ν-bound variable.

Theorem 10. Let Γ ` C , C 6−→ and let C ′ = (νx1)(◦M1 ‖ (νx2)(◦M2 ‖ · · · ‖
(νxn−1)(◦Mn−1 ‖ φMn) . . .)) be a canonical form of C . Then:

1. For 1 ≤ i ≤ n − 1 either blocked(xj ,Mi) where j ≤ i or blocked(y ,Mi) for
some y ∈ dom(Γ); and,

2. Either Mn is a value or blocked(y ,Mn) for some y ∈ {xi | 1 ≤ i ≤ n − 1} ∪
dom(Γ).

Proof. By induction on the derivation of Γ ` C ′, using the definition of −→. ut

We can strengthen the result significantly when we move to configurations
without free variables. To see why, consider just the first two threads of a con-
figuration (νx1)(M1 ‖ (νx2)(M2 ‖ . . .)). As there are no free variables, thread
M1 can only be blocked on x1. Now, from the previous result, thread M2 can
be blocked on either x1 or x2. But, were it blocked on x1, it could reduce with
thread M1; we can conclude it is blocked on x2. Generalising this observation
gives the following progress result.

Theorem 11. Let ` C , C 6−→ and let C ′ = (νx1)(◦M1 ‖ (νx2)(◦M2 ‖ · · · ‖
(νxn−1)(◦Mn−1 ‖ φMn) . . .)) be a canonical form of C . Then:

1. For 1 ≤ i ≤ n − 1, blocked(xi ,Mi); and,
2. Mn is a value.

Proof. By induction on the derivation of ` C ′, relying on Theorem 10. ut

Finally, observe that some subset of the variables x1, . . . , xn must appear in the
result V . Therefore, if the original expression returns a value that does not
contain any channels, it will evaluate to a configuration with no blocked threads
(i.e., a single value).

Corollary 12. Let ` C , C 6−→ and C ′ be a canonical form of C such that the
value returned by C ′ contains no channels, then C ′ = φV for some value V .

2.4 Determinism and Termination

It is straightforward to show that GV is deterministic. In fact, GV enjoys a
strong form of determinism, called the diamond property [2].

Theorem 13. If Γ ` C , C ≡−→≡ D1, and C ≡−→≡ D2, then either D1 ≡ D2

or there exists D3 such that D1 ≡−→≡ D3, and D2 ≡−→≡ D3.

Proof. First, observe that −→V is deterministic, and furthermore configuration
reductions always treat −→V redexes linearly. This means we need only con-
sider the interaction between different configuration reductions. Linear typing
ensures that two configuration reductions cannot overlap. Furthermore, each
configuration reduction is linear in the existing redexes, so we can straightfor-
wardly perform the reductions in either order. ut

It is not hard to see that the system remains deterministic if we extend the
functional part of GV with any well-typed confluent reduction rules at all.

Theorem 14 (Strong normalisation). If Γ ` C , then there are no infinite
≡−→≡ reduction sequences beginning from C .

To prove strong normalisation for core GV, one can use an elementary argument
based on linearity. When we add replication (§4.2) and other features, a logical
relations argument along the lines of that of Perez et al. [21] suffices. Weak nor-
malisation (the existence of a finite reduction sequence to an irreducible config-
uration) also follows as a direct corollary of Theorem 23 and the cut-elimination
theorem for classical linear logic.

Syntax

Types A,B ::= A⊗ B | A O B | 1 | ⊥ | A⊕ B | A N B | 0 | >
Terms P ,Q ::= x ↔ y | νy (P | Q) | x (y).P | x [y].(P | Q)

| x [ini].P | case x {P ;Q} | x ().P | x [].0 | case x {}

Duality

(A⊗ B)⊥ = A⊥ O B⊥

(A O B)⊥ = A⊥ ⊗ B⊥
1⊥ = ⊥
⊥⊥ = 1

(A⊕ B)⊥ = A⊥ N B⊥

(A N B)⊥ = A⊥ ⊕ B⊥
>⊥ = 0

0⊥ = >

Typing

x ↔ w ` x : A,w : A⊥
P ` ∆, y : A Q ` ∆′, y : A⊥

νy (P | Q) ` ∆,∆′ x [].0 ` x : 1

P ` ∆, y : A, x : B

x (y).P ` ∆, x : A O B

P ` ∆, y : A Q ` ∆′, x : B

x [y].(P | Q) ` ∆,∆′, x : A⊗ B

P ` ∆
x ().P ` ∆, x : ⊥

P ` ∆, x : Ai

x [ini].P ` ∆, x : A1 ⊕A2

P ` ∆, x : A Q ` ∆, x : B

case x {P ;Q} ` ∆, x : A N B case x {} ` ∆, x : >

Fig. 6: CP Syntax and Typing

3 Classical Linear Logic

3.1 The Process Calculus CP

Figure 6 gives the syntax and typing rules for the multiplicative-additive frag-
ment of CP; we let ∆ range over typing environments. CP types and duality
are the standard propositions and duality function of classical linear logic, while
the terms are based on a subset of the π-calculus. The types N and ⊕ are in-
terpreted as external and internal choice; the types O and ⊗ are interpreted as
input and output, while their units ⊥ and 1 are interpreted as nullary input and
output. Note that CP’s typing rules implicitly rebind identifiers: for example, in
the hypothesis of the rule for O, x identifies a proof of B , while in the conclusion
it identifies a proof of A O B .

CP includes two rules that are logically derivable: the axiom rule, which is in-
terpreted as channel forwarding, and the cut rule, which is interpreted as process
composition. Two of CP’s terms differ from standard π-calculus terms. The first
is composition—rather than having distinct name restriction and composition
operators, CP provides one combined operator. This syntactically captures the
restriction that composed processes must share exactly one channel. The second
is output: the CP term x [y].(P | Q) includes output, composition, and name
restriction (the name y designates a new channel, bound in P).

A Simpler Send The CP send rule is appealing because if one erases the terms
it is exactly the classical linear logic rule for tensor. However, this correspondence
comes at a price. Operationally, the process x [y].(P | Q) does three things: it
introduces a fresh variable y , it sends y to a freshly spawned process P , and in
parallel it continues as process Q . This complicates both the reduction semantics
of CP (as the cut reduction of ⊗ against O must account for all three behaviours)
and the equivalence of CP and GV (where the behaviour of send is simpler).

Following Boreale [4], we can give an alternative formulation of send, avoiding
the additional name restriction and composition, as follows:

P ` ∆, x : B , y : A

x 〈y〉.P ` ∆, x : A⊗ B , y : A⊥

where x 〈y〉.P is defined as x [z].(y ↔ z | P). In particular, note that

νx (x 〈y〉.P | x (z).Q) = νx (x [z].(y ↔ z | P) | x (z).Q)
−→C νz (y ↔ z | νx (P | Q))
−→C νx (P | Q{y/z})

as we would expect for synchronising a send and a receive. Similarly, we note
that any process x [y].(P | Q) can also be expressed as a process νy (P | x 〈y〉.Q),
which reduces to the original by one application of the commuting conversions.
However, the two formulations are not quite identical. Let us consider the pos-
sible reductions of the two terms. Notice that in x [y].(P | Q), both P and Q
are blocked on x ; however, the same is not true for νy (P | x 〈y〉.Q); the latter
permits reductions in P before synchronising on x .

Cut Elimination. The semantics of CP terms are given by cut reduction, as
shown in Figure 7. We write fv(P) for the free names of process P . Terms are
identified up to structural congruence≡ (as name restriction and composition are
combined into one form, composition is not always associative). We write −→C

for the cut reduction relation, −→CC for the commuting conversion relation,
and −→ for −→C ∪ −→CC. The majority of the cut reduction rules correspond
closely to synchronous reductions in π-calculus—for example, the reduction of N
against ⊕ corresponds to the synchronisation of an internal and external choice.
The rule for reduction of O against ⊗ is more complex than synchronisation of
input and output in GV, as it must also manipulate the implicit name restriction
and composition in CP’s output term. We write =⇒ for (≡−→≡)+, =⇒C for
(≡−→C≡)+, and =⇒CC for =⇒C−→?

CC.
Just as cut elimination in logic ensures that any proof may be transformed

into an equivalent cut-free proof, the reduction rules of CP transform any term
into a term blocked only on external communication—that is to say, if P ` ∆,
then P =⇒CC P ′ where P ′ 6= νx (Q | Q ′) for any x ,Q ,Q ′. The final commuting
conversions play a central role in this transformation, moving any remaining
internal communication after an external communication. However, note that
the commuting conversions do not correspond to computational steps (i.e., any
reduction rule in π-calculus).

Structural congruence

x ↔ w ≡ w ↔ x
νy (P | Q) ≡ νy (Q | P)

νy (P | νz (Q | R)) ≡ νz (νy (P | Q) | R), if y 6∈ fv(R)
νx (P1 | Q) ≡ νx (P2 | Q), if P1 ≡ P2

Primary cut reduction rules

νx (w ↔ x | P) −→C P [w/x]
νx (x [y].(P | Q) | x (y).R) −→C νx (Q | νy (P | R))

νx (x [].0 | x ().P) −→C P
νx (x [ini].P | case x {Q1;Q2}) −→C νx (P | Qi)

νx (P1 | Q) −→C νx (P2 | Q), if P1 −→C P2

Commuting conversions

νz (x [y].(P | Q) | R) −→CC x [y].(νz (P | R) | Q), if z 6∈ fv(Q)
νz (x [y].(P | Q) | R) −→CC x [y].(P | νz (Q | R)), if z 6∈ fv(P)

νz (x (y).P | Q) −→CC x (y).νz (P | Q)
νz (x ().P | Q) −→CC x ().νz (P | Q)

νz (x [ini].P | Q) −→CC x [ini].νz (P | Q)
νz (case x {P ;Q} | R) −→CC case x {νz (P | R); νz (Q | R)}

νz (case x {} | Q) −→CC case x {}

Fig. 7: CP Congruences and Cut Reduction

3.2 Translation from CP to GV

In this section, we show that GV can simulate CP. Figure 8 gives the translation
of CP into GV; typing environments are translated by the pointwise extension
of the translation on types. We rely on our encoding of choice in GV (§2.1).

In translating CP terms to GV terms, the key observation is that CP terms
contain their continuations; for example, the translation of input includes both a
call to receive and the translation of the continuation. Additionally, the rebinding
that is implicit in CP syntax is made explicit in GV. The translation CL−M
translates top-level cuts to GV configurations; cuts that appear under prefixes
are translated to applications of fork. As CP processes do not have return values,
the translation of a CP process contains no main thread.

It is straightforward to see that the translation preserves typing; note that the
channels in the CP typing environment become free variables in its translation.

Theorem 15. If P ` ∆ then L∆M `◦ CLPM.

Structural congruence in CP is a subset of the structural congruence relation for
GV configurations; thus the translation trivially preserves congruence.

Theorem 16. If P ≡ Q, then CLPM ≡ CLQM.

On types

LA⊗ BM = !LAM.LBM
LA O BM = ?LAM.LBM

L1M = end!

L⊥M = end?

LA⊕ BM = LAM⊕ LBM
LA N BM = LAM N LBM

L0M = ⊕{}
L>M = N{}

On terms
Lνx (P | Q)M = let x = fork (λx .LPM) in LQM

Lx ↔ yM = link (x , y)
Lx [y].(P | Q)M = let x = send (fork (λy .LPM), x) in LQM

Lx (y).PM = let (y , x) = receive x in LPM
Lx [].0M = x

Lx ().PM = let () = wait x in LPM
Lx [l].PM = let x = select l x in LPM

Lcase x {P ;Q}M = offer x {inl x 7→ LPM; inr x 7→ LQM}
Lcase x {}M = let (y , x) = receive x in absurd y

CLνx (P | Q)M = (νx)(CLPM ‖ CLQM)
CLPM = ◦ LPM, P is not a cut

Fig. 8: Translation of CP Terms into GV

Finally, observe that the translation of any prefixed CP term is a GV thread of
either the form F [K M] for K ∈ {send, receive,wait} or is ◦x for some variable
x . Thus, we can see that any cut reduction immediately possible for a process
P is similarly possible for LPM. Following such a reduction, several additional
GV reductions may be necessary to expose the next possible communication,
such as substituting the received values into the continuation in the case of the
translation of input, or spawning new threads in the translation of composition.

Theorem 17. If P ` ∆ and P −→C Q, then CLPM −→+ CLQM.

Proof. By induction on P ; the cases are all straightforward.

The commuting conversions in CP do not expose additional reductions, but
are only necessary to assure that the result of evaluation does not have a cut
at the top level. Our characterisation of deadlock freedom in GV has no such
requirement, so we have no need for corresponding steps in GV.

3.3 Translation from GV to CP

In this section, we show that CP can simulate GV. Figure 9 gives the transla-
tion on types and Figure 10 gives the translation on terms, substitutions, and
configurations; we translate type environments pointwise on types.

The translation on session types is homomorphic except for output, where the
output type is dualised. This accounts for the discrepancy between !T .S = ?T .S
and (A⊗B)⊥ = A⊥ O B⊥. Following our previous work [19], the translation on
functional types is factored through an auxiliary translation V−W. The intuition

Session types

J!T .SK = JT K⊥ ⊗ JSK J?T .SK = JT K O JSK Jend!K = 1 Jend?K = ⊥

Functional types
JT K = VTW⊥, if T is not a session type

V0W = 0
VT + UW = VTW⊕ VUW

V1W = 1
VT ×UW = VTW⊗ VUW

VT (UW = VTW⊥ O VUW
VSW = JSK

Fig. 9: Translation of GV Types into CP

is that the translation JT K of a functional type T is the type of its interface,
whereas VTW is the type of its implementation.

As CP processes do not have return values, the translation JM Kz of a term
M of type T includes the additional argument z : JT K⊥, which is a channel
for simulating the return value. The translation on session terms is somewhat
complicated by the need to include apparently trivial axiom cuts (highlighted
in grey). These are needed to align with the translation of values, which permit
further reduction inside the value constructors. The output in the translation of
a fork arises from the need to apply the argument to a freshly generated channel
(notice that application is simulated by an output). Linking is simulated by a
link (↔) guarded by a nullary input which matches the nullary output of the
output channel. Sending is simulated by output as one might expect. Receiving
is simulated by input composed with sending the result to the return channel.
Waiting is simulated by simply connecting the result to the return channel.

Variables are linked to the return channel. Closures are simulated by input,
subject to an appropriate substitution, and application by output. Unit values
are simulated by empty output to the return channel. Pairs are simulated by
evaluating both components in parallel, transmitting the first along the return
channel, and linking the second to the continuation of the return channel. Injec-
tions are simulated by injections. Each elimination form (other than application)
guards the continuation with a suitable prefix, delaying reduction of the continu-
ation until a value has been computed to pass to it. Substitutions are translated
to right-nested sequences of cuts.

The translation of configurations is quite direct. We write C ‖x C ′ to indicate
that the variable x is shared by C and C ′; in a well-typed GV configuration,
there will always be exactly one such variable, so the translation is unambiguous.

Our translation differs from both Wadler’s [26] and our previous one [19],
neither of which simulate even plain β-reduction. This is because the obvious
translation to CP cannot simulate substitution under a lambda abstraction, mo-
tivating our use of closures / weak explicit substitution. Indeed, others have taken
advantage of full explicit substitutions in order simulate small-step semantics of
λ-calculi in the full π-calculus [24].

Session terms

Jfork M Kz = νw (w ↔ z | νx (JM Kx | νy (x 〈w〉.x ↔ y | y [])))
Jlink (M ,N)Kz = νv (v ↔ z | νw (v ↔ w | νx (JM Kx | νy (JN Ky | w().x ↔ y))))
Jsend (M ,N)Kz = νx (JN Kx | νy (JM Ky | x 〈y〉.x ↔ z))

JreceiveM Kz = νy (JM Ky | y(x).νw (w ↔ y | z 〈x 〉.w ↔ z))
Jwait M Kz = νy (y ↔ z | JM Ky)

Functional terms

JxKz = x ↔ z
Jλσx .M Kz = JσK(z (x).JM Kz)

JLM Kz = νx (JM Kx | νy (JLKy | y〈x 〉.y ↔ z))
J()Kz = z []

Jlet () = M in N Kz = νy (JM Ky | y().JN Kz)
J(M ,N)Kz = νx (JM Kx | νy (JN Ky | z 〈x 〉.y ↔ z))

Jlet (x , y) = M in N Kz = νy (JM Ky | y(x).JN Kz)
JinlM Kz = νx (JM Kx | z [in1].x ↔ z)
JinrM Kz = νx (JM Kx | z [in2].x ↔ z)

Jcase L {inl x 7→ M ; inr x 7→ N }Kz = νx (JLKx | case x {JM Kz ; JN Kz})
JabsurdLKz = νx (JLKx | case x {})

Substitutions
J{Vi/xi}K(P) = ν̂(xi 7→ JViKxi)i [P]

ν̂(xi 7→ Pi)i [P] , νx1 (P1 | . . . νxn (Pn | P) . . .)

Configurations
J◦M Kz = νy (JM Ky | y [])
J•M Kz = JM Kz

J(νx)C Kz = JC Kz
JC ‖x C ′Kz = νx (JC Kz | JC ′Kz)

Fig. 10: Translation of GV Terms, Substitutions, and Configurations into CP

Another departure from the previous translations to CP is that, despite the
call-by-value semantics of GV, our translation is more in the spirit of call-by-
name. For instance, in the translation of an application L M , the evaluation of L
and M can happen in parallel, and β-reduction can occur before M has reduced
to a value. The previous translations hide the evaluation of M behind the prefix
y〈x 〉, which means that reduction of M can get stuck in the case that L is a free
variable. Short of performing a CPS transformation on the translation, our new
approach seems necessary in order to ensure that J−K preserves reduction.

It is straightforward to show that the translation preserves typing.

Theorem 18.

1. If Γ ` M : T , then JM Kz ` JΓ K, z : JT K⊥.
2. If Γ ` C , then ∃T .JC Kz ` JΓ K, z : JT K⊥.

Proof. By induction on derivations. ut

We now show that reduction in GV is preserved by reduction in CP. First,
we observe that structural equivalence is preserved.

Theorem 19. If Γ ` C , Γ ` D, and C ≡ D, then JC Kz ≡ JDKz .

Proof. By induction on the derivation of Γ ` C . ut

As the translations on terms and configurations are compositional, we can
mechanically lift them to translations on evaluation contexts and configuration
contexts such that the following lemma holds by construction. Each translation
of a context takes two arguments: a function that describes the CP term to plug
into the hole, and an output channel.

Lemma 20. For X ∈ {E ,F ,G}, JX [M]Kz = JX K[JM K]z

We will make implicit use of Lemma 20 throughout our proofs. We write x 7→ P
for a function that maps a name x to a process P that depends on x .

We now show that substitution commutes with J−K.

Lemma 21. If Γ ` M : T , Γ ` σ : ∆, and z /∈ dom(σ), then JσK(JM Kz) =⇒
JMσKz .

Proof. By induction on the structure of M . Here we show the cases for variables
and closures.

– Case x . By linearity there exists V such that σ = {V /x}.

JσK(JxKz) = νx (JV Kx | x ↔ z) −→ JV Kz = JxσKz

– Case λσ
′
x .M .

JσK(Jλσ
′
x .M K)

= (σ′ = {Vi/xi}i)
JσK(ν̂(xi 7→ (JViKxi))i [z (x).JM Kz])

= (σ = σ1] · · ·] σn where dom(σi) = fv(Vi))
Jσ1K(. . . JσnK(ν̂(xi 7→ JViKxi)i [z (x).JM Kz]))

= (structural equivalence)
ν̂(xi 7→ JσiK(JViKxi))i [z (x).JM Kz]

=⇒ (IH)
ν̂(xi 7→ JViσiKxi)i [z (x).JM Kz]

= (Viσi = V σ)
ν̂(xi 7→ JViσKxi)i [z (x).JM Kz]

= (definition of J−K)
Jλσ

′σx .M K
= (definition of substitution)

Jλσ
′
x .MσK

Each of the remaining non-binding form cases follows straightforwardly using
the induction hypothesis. Each of the remaining binding form cases requires a
commuting conversion to push the appropriate substitution through a prefix. ut

Using the substitution lemma, we prove that J−K preserves reduction on terms.

Theorem 22. If Γ ` M , and M −→V N , then JM Kz =⇒ JN Kv.

Proof. By induction on the derivation of M −→V N . Here we show the case of
β-reduction.

– Case (λσx .M) V −→V M ({V /x} ∪ σ).

J(λσx .M) V Kz
= (definition of J−K)
νw (JV Kw | νy (JσK(y(x).JM Ky) | y [x](w ↔ x | y ↔ z)))

=⇒C (cut send against receive)
νw (JV Kw | νy (y ↔ z | νx (w ↔ x | JσK(JM Ky))))

=⇒C (cut links and α rename)
νx (JV Kx | JσK(JM Kz))
=⇒ (by Lemma 21)
JM ({V /x}] σ)K

The remaining base cases are similarly direct. The inductive case for reduc-
tion inside an evaluation context follows straightforwardly by observing that the
translation of an evaluation context never places its argument inside a prefix. ut

Finally, we prove that J−K preserves reduction on configurations.

Theorem 23. If Γ ` C , Γ ` D, and C −→ D, then JC Kz =⇒ JDKz .

Proof. By induction on the derivation of C −→ D . The inductive cases follow
straightforwardly from the compositionality of the definitions and Theorem 22.
The details appear in Appendix A. ut

4 Extending GV

In this section, we consider two variants of our core calculus: the first adopts a
single self-dual type for closed channels; the second adds unlimited types.

4.1 Unifying end! and end?

We begin by defining a language, based on GV, but combining the types end!

and end? of closed channels. Figure 11 gives the alterations to the syntax and
typing rules. The dual session types end! and end? are replaced by a single, self-
dual type end; a new constant, close is provided to eliminate channels of type
end. (In many existing systems, channels of type end are treated as unlimited,
subject to weakening, rather than requiring an explicit close. We have left close
explicit to simplify the presentation.) The type schemas for fork and link have
been simplified, as we no longer need to build elimination of closed channels into
fork. Figure 12 gives the updated evaluation rules for the extended language. In

Syntax
Session types S ::= !T .S | ?T .S | end | S]
Constants K ::= send | receive | fork | close | link

Changes to duality
end = end

Changes to type schemas for constants

fork : (S (1)(S close : end(1 link : S × S (1

Fig. 11: Syntax and Typing Rules for Combined Closed Channels

Extended configuration equivalence

C ‖ ◦ () ≡ C

Extended reduction rules (all other reduction rules apply as in GV)

Close

(νx)(F [close x] ‖ F ′[close x]) −→ F [()] ‖ F ′[()]

Link

(νx)(F [link (x , y)] ‖ C) −→ F [()] ‖ C{y/x}

Fig. 12: Updated Configuration Evaluation Rules

addition to a new rule for close (replacing the one for wait), the rule for link can
be simplified (as it can now return a unit value instead of a closed channel).

Our modified language is, perhaps surprisingly, strictly more expressive than
GV. Consider the following term:

let w = fork (λw .close w ; M) in close w ; N

Initially, the forked thread and its parent share channel w . After both threads
close w , there can be no further communication between the threads; in contrast,
in core GV, there must always be a final synchronisation with wait. To account
for the increase in expressivity, we must extend the existing configuration typing
rules (Figure 5) with a rule for composition in which no channels are shared:

Γ `φ C Γ ′ `φ
′

C ′

Γ, Γ ′ `φ+φ
′

C ‖ C ′

Despite the additional expressivity of the modified calculus, we might hope
that our results on deadlock freedom and progress (Theorems 7 and 10) would
apply to this calculus as well. For the modified calculus, we must adapt Lemma 5:

Lemma 5A. If Γ ` C and C = G [D ‖ D ′], then fv(D)∩ fv(D ′) is either empty
or the singleton set {x} for some variable x .

Syntactic extensions

Types T ::=�T | . . .
Terms M ,N ::= let !x = M in N | !M | . . .
Values V ::= !σE | . . .
Evaluation contexts E ::= let !x = E in M | . . .

Typing rules

Γ ` M : T �Γ

Γ ` !M : �T

Γ ` M : �T Γ ′, x : T ` N : U

Γ ` let !x = M in N : U

Γ ` M : T

Γ, x : �U ` M : T

Γ, x : �T , x ′ : �T ` M : U

Γ, x : �T ` M {x/x ′} : T

Reduction

let !x = !σM in N −→V N {(Mσ)/x}

Fig. 13: GV Extensions for Unlimited Types

Clearly, this change does not allow the introduction of cyclic dependencies. Thus,
the adaptation of the deadlock freedom and progress results to the modified cal-
culus is entirely mechanical. It is straightforward to show that the other theorems
of (§2.2) still hold in the presence of a single self-dual type for closed channels.

The additional expressivity does mean that we cannot define a translation
from the modified calculus to CP. We believe that we could do so were CP
extended with terms corresponding to the mix rules:

0 `
P ` ∆ Q ` ∆′

P | Q ` ∆,∆′

4.2 Unlimited Types

So far, we have treated only linear types. In this section, we consider one standard
approach to extending the term language to include unlimited types.

Figure 13 gives the extension of GV. We begin by adding a new class of types,
�T , representing unlimited types. (The typical notation for such types in linear
logic, !T , clashes with the notation for output in session types.) We add terms to
construct and deconstruct values of type �T ; �Γ denotes that every type in Γ
must be of the form �U for some type U . Values of type �T can be weakened
(discarded) and contracted (duplicated). We extend the language of values with
unlimited values !σE ; note that, as an unlimited value behaves similarly to a
closure, we must introduce an explicit substitution. As in the treatment of λ-
terms, we extend the typing relation to take account of the substitution

Γ ` Mσ : T dom(σ) = fv(M) �Γ

Γ ` !σM : �T

and treat a term !M as an abbreviation as follows:

!M , !σ(Mσ′)
where fv(M) = {x1, . . . , xn} y1, . . . , yn are fresh variables

σ = {x1/y1, . . . , xn/yn} σ′ = {y1/x1, . . . , yn/xn}

The reduction rule for �T values is unsurprising—however, unlike in the other
reductions, x may be used non-linearly in M . As the concurrent semantics is un-
changed from the base calculus, the extension of deadlock freedom and progress
to this calculus is mechanical. Similarly, it is not difficult to show that the other
theorems of (§2.2) still hold in the presence of either or both extensions. The
only non-trivial feature is the need for a logical relations argument in order to
prove strong normalisation in the presence of unlimited types.

Appendix B extends CP with replication (following Wadler [26]) and corre-
spondingly adapts the translations between CP and GV.

5 Related Work

Session Types and Functional Languages. Session types were originally
proposed by Honda [13], and later extended by Takeuchi et al. [22] and by
Honda et al. [14]. Honda’s system relies on a substructural type system (in which
channels cannot be duplicated or discarded) and adopts the syntax N and ⊕ for
choice; however, he does not draw a connection between his type system and
the connectives of linear logic, and his system includes a single, self-dual closed
channel. Vasconcelos et al. [25] develop a language that integrates session-typed
communication primitives and a functional language. Gay and Vasconcelos [10]
extend the approach to describe asynchronous communication with statically-
bounded buffers. Their approach provides a more flexible mechanism of session
initiation, distinct from their construct for thread creation, and they do not
consider deadlock. Kobayashi [15] describes an embedding of session-typed π-
calculus in polyadic linear π-calculus, relying on multi-argument send and receive
to capture the state of a communication and variant types to capture choice;
Dardha et al. [9] extend his approach to subtyping and polymorphism.

Linear Logic and Session Types. When he originally described linear logic,
Girard [12] suggested that it would be suited to reasoning about concurrency.
Abramsky [1] and Bellin and Scott [3] give embeddings of linear logic proofs in
π-calculus, and show that cut reduction is simulated by π-calculus reduction.
Their work is not intended to provide a type system for π-calculus: there are
many processes which are not the image of some proof.

Caires and Pfenning [5] present a session type system for π-calculus that ex-
actly corresponds to the proof system for the dual intuitionistic linear logic, and
show that (up to congruence) cut reductions corresponds to process reductions
or process equivalences. Toninho et al. [23] consider embeddings of the λ-calculus
into session-typed π-calculus; their focus is on expressing the concurrency inher-
ent in λ-calculus terms, rather than simulating standard reduction. Wadler [26]

adapts the approach of Caires and Pfenning to classical (rather than intuitionis-
tic) linear logic, and gives a translation from GV (his functional language) to CP
(his process calculus). He does not give a direct semantics for GV. In previous
work [19], we give a type-preserving translation from CP to GV.

Deadlock Freedom and Progress. There have been several approaches to
guarantee deadlock freedom in π-calculus. Kobayashi [16] and Padovani [20]
extend type systems for linear π-calculus with priority information, capturing
the order in which channels are used. Giachino et al. [11] give a type system
that expresses dependencies directly in the types of CCS terms. These systems
permit more programs than ours, at the cost of significantly more complex type
systems; they also do not enjoy the close correspondence with linear logic (or
other well-known logical systems).

Carbone and Debois [7] give a graphical characterisation of session-typed
processes; this allows them to directly identify cycles in channel dependencies.
They show that all possible interactions eventually take place in cycle-free pro-
cesses. Carbone et al. [6] show similar results for well-typed processes under
Kobayashi’s type system for deadlock freedom; their approach accommodates
processes with open channels by defining a type-directed closure of a process,
and showing that open processes progress only if their typed closures progress.

6 Conclusion and Future Work

We have presented a small-step operational semantics for GV, a session-typed
functional core language. We have proved that it is deadlock-free, determinis-
tic, and terminating, and have established simulations both ways between our
semantics for GV and cut-reduction in a process calculus based on linear logic.
Furthermore, we have shown that GV provides a promising basis for future mod-
ular language development by illustrating two extensions to GV, both of which
preserve deadlock-freedom, determinism, and termination.

We identify two important directions for future work: recursion and asyn-
chronous communication. Recursion is essential both for channels (to capture
repeating behaviour, such as adding recipients to a mail message) and for func-
tional programming. Adding unchecked recursion to GV would clearly compro-
mise termination and introduce the possibility of livelock; we hope that adapting
approaches used for fixed points in linear logic might mitigate this issue. Asyn-
chronous communication naturally lends itself to practical implementation. We
hope to develop the approach of Gay and Vasconcelos [10] and show a corre-
spondence between synchronous and asynchronous semantics for GV.

Acknowledgements. Thanks to Philip Wadler and the anonymous reviewers. This
work was funded by EPSRC grant number EP/K034413/1.

References

[1] S. Abramsky. Proofs as processes. Theor. Comput. Sci., 135(1):5–9, Apr. 1992.

[2] H. P. Barendregt. The Lambda Calculus Its Syntax and Semantics, volume 103.
North Holland, revised edition, 1984.

[3] G. Bellin and P. J. Scott. On the π-Calculus and linear logic. Theoretical Computer
Science, 135(1):11–65, 1994.

[4] M. Boreale. On the expressiveness of internal mobility in name-passing calculi. In
CONCUR, pages 163–178. Springer, 1996.

[5] L. Caires and F. Pfenning. Session types as intuitionistic linear propositions. In
CONCUR, pages 222–236. Springer, 2010.

[6] M. Carbone, O. Dardha, and F. Montesi. Progress as compositional lock-freedom.
In COORDINATION 2014, pages 49–64. Springer, 2014.

[7] M. Carbone and S. Debois. A graphical approach to progress for structured com-
munication in web services. In ICE, pages 13–27, 2010.

[8] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web programming without
tiers. In FMCO, volume 4709 of LNCS. Springer, 2006.

[9] O. Dardha, E. Giachino, and D. Sangiorgi. Session types revisited. In PPDP,
pages 139–150. ACM, 2012.

[10] S. J. Gay and V. T. Vasconcelos. Linear type theory for asynchronous session
types. Journal of Functional Programming, 20(01):19–50, 2010.

[11] E. Giachino, N. Kobayashi, and C. Laneve. Deadlock analysis of unbounded pro-
cess networks. In CONCUR, pages 63–77. Springer, 2014.

[12] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, Jan. 1987.
[13] K. Honda. Types for dyadic interaction. In CONCUR, pages 509–523. Springer,

1993.
[14] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disci-

pline for structured communication-based programming. In ESOP, pages 122–138.
Springer, 1998.

[15] N. Kobayashi. Type systems for concurrent programs. In 10th Anniversary Col-
loquium of UNU/IIST, pages 439–453. Springer, 2002.

[16] N. Kobayashi. A new type system for deadlock-free processes. In CONCUR, pages
233–247. Springer, 2006.

[17] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-calculus. In
POPL, pages 358–371. ACM, 1996.

[18] J. Lévy and L. Maranget. Explicit substitutions and programming languages.
In Foundations of Software Technology and Theoretical Computer Science, 1999,
volume 1738 of LNCS, pages 181–200. Springer, 1999.

[19] S. Lindley and J. G. Morris. Sessions as propositions. In PLACES, 2014.
[20] L. Padovani. Deadlock and lock freedom in the linear π-calculus. In LICS, page 72.

ACM, 2014.
[21] J. A. Pérez, L. Caires, F. Pfenning, and B. Toninho. Linear logical relations and

observational equivalences for session-based concurrency. Inf. Comput., 239:254–
302, 2014.

[22] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its
typing system. In PARLE, pages 398–413. Springer, 1994.

[23] B. Toninho, L. Caires, and F. Pfenning. Functions as session-typed processes. In
FOSSACS, pages 346–360. Springer, 2012.

[24] S. van Bakel and M. G. Vigliotti. A logical interpretation of the λ-calculus into
the π-calculus, preserving spine reduction and types. In CONCUR, pages 84–98.
Springer, 2009.

[25] V. T. Vasconcelos, S. J. Gay, and A. Ravara. Type checking a multithreaded
functional language with session types. Theor. Comput. Sci., 368(1-2):64–87, 2006.

[26] P. Wadler. Propositions as sessions. J. Funct. Program., 24(2-3):384–418, 2014.

A Selected Proofs

Theorem 2. If Γ ` C and C −→ C ′ then Γ ` C ′.

Proof. By induction on the derivation of C −→ C ′. We include several repre-
sentative cases.

– Case Lift is immediate by the induction hypothesis.
– Case LiftV follows from Lemma 1.
– In case Send, from the assumption Γ ` (νx)(F [send (V , x)] ‖ F ′[receive x]),

we have Γ, x : S] ` F [send (V , x)] ‖ F ′[receive x], from which we can assume
that Γ partitions as Γ1, Γ2 such that S = !T .S ′, V has type T , and Γ1, x :
!T .S ′ ` F [send (V , x)], Γ2, x : ?T .S ′ ` F ′[receive x]. As send : T × !T .S ′ (
S ′ and Γ1, x : !T .S ′ ` F [send (V , x)], we can conclude that Γ1, x : S ′ ` F [x].
By a similar argument, we conclude that Γ2, x : S ′ ` F ′[(V , x)]. Finally, we
can recompose the resulting processes concluding that Γ1, Γ2, x : S] ` F [x] ‖
F ′[(V , x)] and hence Γ ` (νx)(F [x] ‖ F ′[(V , x)]).

– In case Fork, from the assumption Γ ` F [fork V], we can conclude that Γ
splits as Γ1, Γ2 and there is some S such that Γ1, x : S ` F [x] and Γ2, x : S `
V x . Thus we have that Γ, x : S ` F [x] ‖ V x and Γ ` (νx)(F [x] ‖ V x).

– In case Wait, from the assumption Γ ` (νx)(F [wait x] ‖ x), we can conclude
that Γ, x : end? ` F [wait x] and thus, from the typing of wait, that Γ ` F [()].

– In case Link, from the assumptions Γ ` (νx)(F [link (x , y)] ‖ F ′[M]), x ∈
fv(M), we can conclude that Γ partitions as Γ1, Γ2, y : S such that Γ1, y :
S , x : S ` F [link (x , y)] and Γ2, x : S ` F ′[M]. (Note that the free variable
assumption on the reduction rule for link allows us to assume that neither F
nor F ′ binds x or y .) From the type of link, we have that Γ, x : end! ` F [x];
similarly, from x ∈ fv(M), we can conclude that Γ2, y : S ` F ′[M {y/x}].
Finally, from the typing rule for wait, we have that Γ2, x : end?, y : S `
F ′[wait x ; M {y/x}], and that Γ ` (νx)(F [x] ‖ F ′[wait x ; M {y/x}]) ut

Lemma 9. If Γ ` C , then there is some C ′ ≡ C such that Γ ` C ′ and C ′ is in
canonical form.

Proof. Let x1, . . . , xn−1 be the ν-bound variables in C and M1, . . . ,Mn be the
terms in P ; the proof is by induction on n. If n > 1, then pick some Mi such that
there is exactly one ν-bound variable xj where xj ∈ fv(Mi). (That there must be
such an Mi and xj can be established by a standard counting argument, together
with Lemma 5.) Now, construct D from C by the homomorphic extension of the
mapping (νxj)E 7→ E ; E ‖ φMi 7→ E . From the assumption that Γ ` C , we can
conclude that there is some Γ ′ ⊆ Γ and type S such that Γ ′, xj : S ` D . By
the induction hypothesis, there is some D ′ ≡ D in canonical form. Finally, let
C ′ = (νxj)(φMi ‖ D ′); we can see that straightforwardly that C ′ is in canonical
form; that C ≡ C ′; and, that Γ ` C ′. ut

Theorem 23. If Γ ` C and C −→ D, then JC Kz =⇒ JDKz .

Proof. By induction on the derivation of C −→ D . The inductive cases follow
straightforwardly from the compositionality of the definitions and Theorem 22.

– Case (νx)(F [send (V , x)] ‖ F ′[receive x]) −→ (νx)(F [x] ‖ F ′[(V , x)]).

J(νx)(F [send (V , x)] ‖ F ′[receive x])Kz
=
νx (JF K[Jsend (V , x)Ky]z | JF ′K[Jreceive xK]z)

=
νx (JF K[z 7→ νv (JV Kv | νw (x ↔ w | w〈v〉.w ↔ z))]z
| JF ′K[z 7→ νy (x ↔ y | y(v).νw (y ↔ w | z 〈v〉.w ↔ z))]z

=⇒C (cut links)
νx (JF K[z 7→ νv (JV Kv | x 〈v〉.x ↔ z)]z
| JF ′K[z 7→ x (v).νw (x ↔ w | z 〈v〉.w ↔ z)]z

=⇒C (cut send against receive)
νx (JF K[z 7→ νv (JV Kv | x ↔ z)] | JF ′K[z 7→ νw (x ↔ w | z 〈v〉.w ↔ z)]z)

≡
νx (JF K[z 7→ x ↔ z]z | JF ′K[z 7→ νv (JV Kv | νw (x ↔ w | z 〈v〉.w ↔ z))]z)

=
J(νx)(F [x] ‖ F ′[(V , x)])K

– Case (νx)(F [wait x] ‖ ◦ x) −→ F [()].

J(νx)(F [wait x] ‖ ◦ x)Kz
=
νx (JF K[y 7→ νw (w ↔ x | w ↔ y)]z | νy (x ↔ y | y []))

=⇒C (cut links)
νx (JF K[y 7→ x ↔ y]z | x [])

=⇒C (cut link)
JF K[y 7→ y []]z

=
JF [()]Kz

– Case F [fork (λσx .M)] −→ (νx)(F [x] ‖ Mσ).

JF [fork (λσx .M)]Kz
=

JF K[Jfork (λσx .M)K]z
=

JF K[z 7→ νx (JxKz | νy (JσK(y(x).JM Ky) | νw (y〈x 〉.y ↔ w | w [])))]z
=⇒C (cut send against receive)

JF K[z 7→ νx (JxKz | νy (JσK(JM Ky) | y []))]z
≡
νx (JF K[JxK]z | JσK(Jνy (JM Ky | y [])K))

=
J(νx)(F [x] ‖ Mσ)Kz

– Case (νx)(F [link (x , y)] ‖ F ′[M]) −→ (νx)(F [x] ‖ F ′[wait x ; M {y/x}]).

J(νx)(F [link (x , y)] ‖ F ′[M])Kz
=
νx (JF K[Jlink (x , y)K]z | JF ′K[JM K]z)

=
νx (JF K[z 7→ νv(v ↔ z | νw(v ↔ w |
νx ′ (x ↔ x ′ | νy ′ (y ↔ y ′ | w().x ′ ↔ y ′))))]z | JF ′K[JM K]z)

=⇒C (cut links)
νx (JF K[z 7→ νv (v ↔ z | νw (v ↔ w | w().x ↔ y))]z | JF ′K[JM K]z)

≡
νv (JF K[z 7→ v ↔ z]z | νx (νw (v ↔ w | w().x ↔ y) | JF ′K[JM K]z))

≡
νv (JF K[z 7→ v ↔ z]z | JF ′K[z 7→ νw (v ↔ w | w().νx (x ↔ y | JM Kz))]z)

=
J(νx)(F [x] ‖ F ′[wait x ; M {y/x}])Kz

B Replication

Wadler’s CP calculus provides replicated channels, used to obtain arbitrarily
many copies of some concurrent behaviour, corresponding to the exponentials
in linear logic. Figure 14 gives the typing and reduction rules for replicated
channels; ?∆ denotes a context in which all types are of the form ?A for some
type A. Note that duplication and discarding of replicated processes happens in
the cut reduction rules for weakening and contraction, not as part of the rule
for dereliction. The rules for exponentials closely parallel the rules for unlimited
GV values; thus, the extension of our translation from GV to CP to include
unlimited values is straightforward.

V�TW , !VTW

J!M Kz , !z (y).JM Ky
Jlet !x = V in M Kz , νy (JV Ky | ?y [x].JM Kz)

Theorem 24. If Γ ` C , Γ ` D, and C −→ D, then JC Kz =⇒ JDKz .

The translation in the other direction is not quite as simple: we must provide
replicated channels, not just replicated values. However, following a similar pat-
tern to our encoding of session-level choice using value-level sums, we can encode
such channels using value-level unlimited values. First, we introduce new, dual
session type constructors Service(S) and Server(S), defined by

Server(S) , !(�S).end! Service(S) , ?(�S).end?

Note that Server(S) = Service(S). We then introduce new constants replicate
and request, with type signatures

replicate : (Server(S),�(S (end!))(end! request : Service(S)(S

Syntax
Types A,B ::= !A | ?A | . . .
Terms P ,Q ::= x (y).P | x [y].P | . . .

Duality
(!A)⊥ = ?(A⊥) (!A)⊥ = !(A⊥)

Typing rules

P ` ?∆, x : A

x (y).P ` ?∆, x : !A

P ` ∆, x : A

x [y].P ` ∆, x : ?A

P ` ∆
P ` ∆, x : ?A

P ` ∆, x : ?A, x ′ : ?A

P{x/x ′} ` ∆, x : ?A

Primary cut reduction rules

νx (x (y).P | x [y].Q) −→C νy (P | Q)
νx (x (y).P | Q) −→C Q x 6∈ fv(Q)

νx (x (y).P | Q{x/x ′}) −→C νx (x (y).P | νx ′ (x ′(y).P | Q))

Commuting conversions

νz (x [y].P | Q) −→CC x [y].νz (P | Q)
νz (x (y).P | Q) −→CC x (y).νz (P | Q)

Fig. 14: Replicated channels in CP

defined as follows:

replicate(x , f) , send (!(let !g = f in fork g), x)

request s , let (w , s) = receive s in wait s; let !y = w in y

These can be used to define the translation from CP to GV:

L!AM , Server(LAM) L?AM , Service(LAM)

L!x (y).PM , replicate(x , !(λy .LPM))
L?x [y].PM , let y = request x in LPM

L P ` ∆
P ` ∆, x : ?A M , let (w , x) = receive x in

wait x ; LPM

L P ` ∆, x : ?A, y : ?A

P{x/z , y/z} ` ∆, z : ?A M , let (w , z) = receive z in wait z ;
let x = fork (λx .send (w , x)) in
let y = fork (λy .send (w , y)) in LPM

The translation emphasises that, while weakening and contraction are implicit
in CP, they play a central role in the CP semantics, and thus have non-trivial
translations to GV. Theorem 17 directly extends to CP with replicated channels.

Theorem 25. If P ` ∆ and P −→C Q, then CLPM −→+ CLQM.

	A Semantics for Propositions as Sessions

