Session Types without Tiers

1 2

3 4

5

6

7

8 9

10

11

12

13

14

15

16

17

18

19 20

21

24 25

26

27

28

29

30

31

32

33

34

35

36

37

38 39

40

41 42 SIMON FOWLER, The University of Edinburgh

SAM LINDLEY, The University of Edinburgh

J. GARRETT MORRIS, University of Kansas

SÁRA DECOVA, The University of Edinburgh

Session types statically guarantee that communication complies with a protocol. However, most accounts of session typing do not account for failure, which means they are of limited use in real applications-especially distributed applications-where failure is pervasive.

We present the first formal integration of asynchronous session types with exception handling in a functional programming language. We define a core calculus which satisfies preservation and progress properties, is deadlock free, confluent, and terminating.

We provide the first implementation of session types with exception handling for a fully-fledged functional programming language, by extending the Links web programming language; our implementation draws on existing work on effect handlers. We illustrate our approach through a running example of two-factor authentication, and a larger example of a session-based chat application where communication occurs over session-typed channels and disconnections are handled gracefully.

## **ACM Reference Format:**

Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. 2019. Exceptional Asynchronous Session Types: Session Types without Tiers. Proc. ACM Program. Lang. POPL, 1, Article 1 (November 2019), 56 pages. 22 https://doi.org/10.475/123 4 23

## **1 INTRODUCTION**

With the growth of the internet and mobile devices, as well as the failure of Moore's law, concurrency and distribution have become central to many applications. Writing correct concurrent and distributed code requires effective tools for reasoning about communication protocols. While data types provide an effective tool for reasoning about the shape of data communicated, protocols also require us to reason about the order in which messages are transmitted.

Session types [Honda 1993; Honda et al. 1998] are types for protocols. They describe both the shape and order of messages. If a program type-checks according to its session type, then it is statically guaranteed to comply with the corresponding protocol. Alas, most accounts of session types do not handle failure, which means they are of limited use in distributed settings where failure is pervasive. Inspired by work of Mostrous and Vasconcelos [2014], we present the first account of asynchronous session types in a functional programming language, which smoothly handles both distribution and failure. We present both a core calculus enjoying strong

Authors' addresses: Simon Fowler, The University of Edinburgh, simon.fowler@ed.ac.uk; Sam Lindley, The University of Edinburgh, sam.lindley@ed.ac.uk; J. Garrett Morris, University of Kansas, garrett@ittc.ku.edu; Sára Decova, The University of Edinburgh, sara.decova@gmail.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee 43 provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

44 the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, 45

contact the owner/author(s). 46

2475-1421/2019/11-ART1

https://doi.org/10.475/123\_4 48

<sup>© 2019</sup> Copyright held by the owner/author(s). 47

| 50 | TwoFactorServer ≜                     | $TwoFactorClient \triangleq$         |
|----|---------------------------------------|--------------------------------------|
| 51 | ?(Username, Password).⊕{              | !(Username, Password).&{             |
| 52 | Authenticated : ServerBody,           | Authenticated : ClientBody,          |
| 55 | Challenge : !ChallengeKey.?Response.  | Challenge : ?ChallengeKey.!Response. |
| 55 | $\oplus$ {Authenticated : ServerBody, | &{Authenticated : ClientBody,        |
| 56 | AccessDenied : End},                  | AccessDenied : End},                 |
| 57 | AccessDenied : End}                   | AccessDenied : End}                  |
| 58 | (a) Server Session Type               | (b) Client Session Type              |
| 59 |                                       | (b) Chefft Session Type              |

Fig. 1. Two-factor Authentication Session Types

metatheoretical correctness properties and a practical implementation as an extension of the Links web programming language [Cooper et al. 2007].

#### 1.1 Session Types

We illustrate session types with a basic example of two-factor authentication. A user inputs their credentials. If the login attempt is from a known device, then they are authenticated and may proceed to perform privileged actions. If the login attempt is from an unrecognised device, then the user is sent a challenge code. They enter the challenge code into a hardware key which yields a response code. If the user responds with the correct response code, then they are authenticated.

A session type specifies the communication behaviour of one endpoint of a communication channel participating in a dialogue (or *session*) with the other endpoint of the channel. Fig. 1 shows the session types of two channel endpoints connecting a client and a server. Fig. 1a shows the session type for the server which first receives (?) a pair of a username and password from the client. Next, the server selects ( $\oplus$ ) whether to authenticate the client, issue a challenge, or reject the credentials. If the server decides to issue a challenge, then it sends (!) the challenge string, awaits the response, and either authenticates or rejects the client. The ServerBody type abstracts over the remainder of the interactions, for example making a deposit or withdrawal.

*Duality.* The client implements the *dual* session type, shown in Fig. 1b. Whenever the server receives a value, the client sends a value, and vice versa. Whenever the server makes a selection, the client offers a choice (&), and vice versa. This *duality* between client and server ensures that each communication is matched by the other party. We denote duality with an overbar; thus TwoFactorClient = TwoFactorServer and TwoFactorServer = TwoFactorClient.

*Implementing Two-factor Authentication.* Let us suppose we have constructs for sending and receiving along, and for closing, an endpoint.

| send $M N : S$                   | where $M$ has type A, and $N$ is an endpoint with session type $!A.S$ |
|----------------------------------|-----------------------------------------------------------------------|
| <b>receive</b> $M: (A \times S)$ | where $M$ is an endpoint with session type $?A.S$                     |
| <b>close</b> <i>M</i> : <b>1</b> | where $M$ is an endpoint with session type End                        |

Let us also suppose we have constructs for selecting and offering a choice:

| select $\ell_j M : S_j$                                    | where <i>M</i> is an endpoint with session type $\bigoplus \{\ell_i : S_i\}_{i \in I}$ , and $j \in I$ |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| <b>offer</b> $M \{\ell_i(x_i) \mapsto N_i\}_{i \in I} : A$ | where <i>M</i> is an endpoint with session type $\&\{\ell_i : S_i\}_{i \in I}$ , each $x_i$            |
|                                                            | binds an endpoint with session type $S_i$ , and each $N_i$ has type $A$                                |

Proc. ACM Program. Lang., Vol. POPL, No. 1, Article 1. Publication date: November 2019.

1:2

| We can now write a client implementation.                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| twoFactorClient : (Username $\times$ Password $\times$ TwoFactorClient) $\rightarrow$ 1                                                                                                                                                                                                                           |
| twoFactorClient(username, password, s) $\triangleq$                                                                                                                                                                                                                                                               |
| let $s = send$ (username, password) s in                                                                                                                                                                                                                                                                          |
| offer s {Authenticated(s) $\mapsto$ clientBody(s)                                                                                                                                                                                                                                                                 |
| Challenge(s) $\mapsto$ let (key, s) = receive s in                                                                                                                                                                                                                                                                |
| <pre>let s = send (generateResponse(key)) s in</pre>                                                                                                                                                                                                                                                              |
| <b>offer</b> s {Authenticated(s) $\mapsto$ clientBody(s)                                                                                                                                                                                                                                                          |
| AccessDenied(s) $\mapsto$ close s; loginFailed}                                                                                                                                                                                                                                                                   |
| AccessDenied(s) $\mapsto$ <b>close</b> s; loginFailed}                                                                                                                                                                                                                                                            |
| The twoFactorClient function takes the credentials and an endpoint of type TwoFactorClient as its                                                                                                                                                                                                                 |
| arguments. The credentials are sent along the endpoint, then three choices are offered depending on                                                                                                                                                                                                               |
| whether the server authenticates the user, sends a two-factor challenge, or rejects the authentication                                                                                                                                                                                                            |
| attempt. If the server authenticates the user, then the program progresses to the main application $(1, 1)$                                                                                                                                                                                                       |
| (clientBody(s)). If the server sends a challenge, then the client receives the challenge key, and sends the receives the challenge key, and sends the receives the challenge key.                                                                                                                                 |
| the challenge response was successful. The rejection of an authentication attempt is part of the                                                                                                                                                                                                                  |
| protocol and not exceptional behaviour. We can also write a server implementation                                                                                                                                                                                                                                 |
| protocor and not exceptional behaviour. We can also write a server implementation.                                                                                                                                                                                                                                |
| twoFactorServer : IwoFactorServer $\rightarrow 1$                                                                                                                                                                                                                                                                 |
| twoFactorServer(s) = let ((username, password), s) = receive s in<br>if a backDataile (username, back user) there                                                                                                                                                                                                 |
| In check Details ( <i>username</i> , <i>pusswora</i> ) then<br>lat s = select Authenticated s in serverBody(s)                                                                                                                                                                                                    |
| else                                                                                                                                                                                                                                                                                                              |
| let $s = $ select AccessDenied $s$ in close $s$                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                   |
| the credentials which are checked using check Details. If the check passes, then the server proceeds                                                                                                                                                                                                              |
| to the application body (serverBody(s)): if not, then the server notifies the client by selecting the                                                                                                                                                                                                             |
| AccessDenied branch. This particular server implementation opts to never send a challenge request.                                                                                                                                                                                                                |
| Statically checking session types demands a substructural type system. We discuss three options:                                                                                                                                                                                                                  |
| linear types, affine types, and linear types with explicit cancellation.                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                   |
| 1.2 Linear Types                                                                                                                                                                                                                                                                                                  |
| Simply providing constructs for sending and receiving values, and for selecting and offering choices,                                                                                                                                                                                                             |
| is insufficient for safely implementing session types. Consider the following client:                                                                                                                                                                                                                             |
| wrongClient : TwoFactorClient → 1                                                                                                                                                                                                                                                                                 |
| wrongClient(s) $\triangleq$ let $t =$ send ("Alice", "hunter2") s in                                                                                                                                                                                                                                              |
| <pre>let t = send ("Bob", "letmein") s in</pre>                                                                                                                                                                                                                                                                   |
| Reuse of <i>s</i> allows a (username, password) pair to be sent along the same endpoint twice. violating                                                                                                                                                                                                          |
| the fundamental property of <i>session fidelity</i> , which states that in a well-typed program, communi-<br>cation over an endpoint matches its session type. To maintain session fidelity and ensure that all<br>communication actions in a session type occur session type systems typically require that each |

endpoint is used *linearly*—exactly once.

*Exceptions.* In practice, linear session types are unrealistic. Thus far, we have assumed
 checkDetails always succeeds, which may be plausible if checking against an in-memory store, but
 not if connecting to a remote database. One option would be for checkDetails to return false on

| 148 | failure, but that would lose information. Instead, suppose we have an exception handling construct.                    |
|-----|------------------------------------------------------------------------------------------------------------------------|
| 149 | As a first attempt, we might try to write:                                                                             |
| 150 | exnServer1 : TwoFactorClient −∘ 1                                                                                      |
| 151 | exnServer1(s) $\triangleq$ let ((username, password), s) = receive s in                                                |
| 152 | try if checkDetails(username, password) then                                                                           |
| 153 | let s = select Authenticated s in serverBody(s)                                                                        |
| 154 | else                                                                                                                   |
| 155 | let s = select AccessDenied s in close s                                                                               |
| 156 | <pre>catch log("Database Error")</pre>                                                                                 |
| 157 |                                                                                                                        |
| 158 | However, the above code does not type-check and is unsafe. Linear endpoint's is not used in the                        |
| 159 | <b>catch</b> block and yet is still open if an exception is raised by checkDetails.                                    |
| 160 | As a second attempt, we may decide to localise exception handling to the call to checkDetails.                         |
| 161 | we infroduce checkDetailsOpt, which returns some( <i>result</i> ) if the call is successful and None if not.           |
| 162 | checkDetailsOpt : (Username × Password) Option(Bool)                                                                   |
| 163 | $checkDetailsOpt(username, password) \triangleq try Some(checkDetails(username, password))$                            |
| 164 | catch None                                                                                                             |
| 165 |                                                                                                                        |
| 166 | exnServer2 : TwoFactorServer — 1                                                                                       |
| 167 | $exnServer2(s) \triangleq let ((username, password), s) = receive s in$                                                |
| 168 | case checkDetailsOpt(username, password) of                                                                            |
| 169 | Some( <i>res</i> ) $\mapsto$ if <i>res</i> then let <i>s</i> = select Authenticated <i>s</i> in serverBody( <i>s</i> ) |
| 170 | else let s = select AccessDenied s in close s                                                                          |
| 1/1 | None $\mapsto \log("Database Error")$                                                                                  |
| 172 | Still the code is unsafe as it does not use s in the None branch of the case-split. However, we do                     |
| 173 | now have more precise information about the type of s, since it is unused in the try block. One                        |
| 174 | solution could be to adapt the protocol by adding an <b>InternalError</b> branch:                                      |
| 176 | Two Easter Server Even $\frac{\Delta}{\Delta} 2(1)$ server B Descuerd $\Phi$                                           |
| 177 | Authenticated : ServerBody                                                                                             |
| 178 | Authenticated . Jefverbouy,<br>Challange . IChallangeKey Despanse @(Authenticated . ServerBody, AssessDenied . End)    |
| 179 | AccessDenied : End.                                                                                                    |

<sup>180</sup> InternalError : End}

We could use **select** InternalError *s* in the None branch to yield a type-correct program, but doing so would be unsatisfactory as it clutters the protocol and the implementation with failure points.

Disconnection. The problem of failure is compounded by the possibility of disconnection. On a
 single machine it may be plausible to assume that communication always succeeds. In a distributed
 setting this assumption is unrealistic as parties may disconnect without warning. The problem is
 particularly acute in web applications as a client may close the browser at any point. In order to
 adequately handle failure we must incorporate some mechanism for detecting disconnection.

## 190 1.3 Affine Types

We began by assuming linear types—each endpoint must be used *exactly* once. One might consider
relaxing linear types to *affine types*—each endpoint must be used *at most* once. Statically checked
affine types form the basis of the existing Rust implementation of session types [Jespersen et al.
2015] and dynamically checked affine types form the basis of the OCaml FuSe [Padovani 2017]
and Scala lchannels [Scalas and Yoshida 2016] session type libraries. Affine types present two

181

182

183

quandaries arising from endpoints being silently discarded. First, a developer receives no feedback if they *accidentally* forget to finish a protocol implementation. Second, if an exception is raised in an evaluation context that captures an open endpoint then the peer may be left waiting forever.

201 1.4 Linear Types with Explicit Cancellation

202 Mostrous and Vasconcelos [2014] address the difficulties outlined above through an explicit discard 203 (or cancellation) operator. (They characterise their sessions as affine, but it is important not to 204 confuse their system with affine type systems, as in §1.3, which allow variables to be discarded 205 *implicitly.*) Their approach boils down to three key principles: endpoints can be explicitly discarded; 206 an exception is thrown if a communication cannot succeed because a peer endpoint has been 207 cancelled; and endpoint cancellations are propagated when endpoints become inaccessible due to 208 an exception being thrown. They introduce a process calculus including the term  $a_{d}$  ("cancel a"), 209 which indicates that endpoint *a* may no longer be used to perform communications. They provide 210 an exception handling construct which attempts a communication action, running an exception 211 handler if the action fails, and show that explicit cancellation is well-behaved: their calculus satisfies 212 preservation and global progress (well-typed processes never get stuck), and is confluent.

Explicit cancellation neatly handles failure while ruling out accidentally incomplete implementations and providing a mechanism for notifying peers when an exception is raised. In this paper we take advantage of explicit cancellation to formalise and implement asynchronous session types with failure handling in a distributed functional programming language; this is not merely a routine adaptation of the ideas of Mostrous and Vasconcelos for the following reasons:

- They present a process calculus, but we work in a functional programming language.
- Communication in their system is *synchronous*, depending on a rendezvous between sender and receiver. We require *asynchronous* communication, which is more amenable to implementation in a distributed setting.
- Their exception handling construct is over a single communication action and does not allow nested exception handling. This design is difficult to reconcile with a functional language, as it is inherently *non-compositional*. Our exception handling construct is *compositional*.

We define a core concurrent  $\lambda$ -calculus, *Exceptional GV* (EGV), with asynchronous session-typed communication and exception handling. As with the calculus of Mostrous and Vasconcelos, an exception is raised when a communication action fails. But our compositional exception handling construct can be arbitrarily nested, and allows exception handling over multiple communication actions. Using EGV, we may implement the two factor authentication server as follows:

| 232 | exnServer3 : TwoFactorServer −∞ 1                                                       |
|-----|-----------------------------------------------------------------------------------------|
| 233 | $exnServer3(s) \triangleq let ((username, password), s) = receive s in$                 |
| 234 | try checkDetails(username, password) as res in                                          |
| 235 | <b>if</b> res <b>then let</b> s = <b>select</b> Authenticated s <b>in</b> serverBody(s) |
| 236 | else let s = select AccessDenied s in close s                                           |
| 237 | otherwise                                                                               |
| 238 | <pre>cancel s; log("Database Error")</pre>                                              |
| 239 |                                                                                         |

Following Benton and Kennedy [2001], an exception handler **try** *L* **as** *x* **in** *M* **otherwise** *N* takes an explicit success continuation *M* as well as the usual failure continuation *N*. If checkDetails fails with an exception, then *s* is safely discarded using **cancel**, which takes an endpoint and returns the unit value. Disconnection is handled by cancelling all endpoints associated with a client. If a peer tries to read along a cancelled endpoint then an exception is thrown.

245

200

219

220

221

222

223

224

225

246 let s =try let  $s = fork (\lambda t. cancel t)$  in fork ( $\lambda t$ . let (res, s) = receive s in let (res, t) = receive t in let  $f = (\lambda x. \text{send } x s)$  in close t; res) in raise; close s; res as res in let u =fork ( $\lambda v$ .cancel v) in f(5)print("Result: " + res) let u =send s uin (c) Closures otherwise print "Error!" close *u* (a) Cancellation and Exceptions (b) Delegation

Fig. 2. Failure Examples

We implement the constructs described by EGV as an extension to Links [Cooper et al. 2007], a functional programming language for the web. Our implementation is based on a minimal translation to effect handlers [Plotkin and Pretnar 2013].

#### 1.5 Contributions

This paper makes five main contributions:

- (1) Exceptional GV (§2), a core linear lambda calculus extended with asynchronous session-typed channels and exception handling. We prove  $(\S^3)$  that the core calculus enjoys preservation, progress, a strong form of confluence called the *diamond property*, and termination.
- (2) Extensions to EGV supporting exception payloads, unrestricted types, and access points (§4).
- (3) The design and implementation of an extension of the Links web programming language to support tierless web applications which can communicate using session-typed channels (§5).
- (4) Client and server backends for Links implementing session typing with exception handling (§5.4), drawing on connections with effect handlers [Plotkin and Pretnar 2013].
- (5) Example applications using the infrastructure ( $\S$ 6). In addition to our two-factor authentication workflow we outline the implementation of a chat server.

Links is open-source and freely-available. The website can be found at http://www.links-lang.org and the source at http://www.github.com/links-lang/links. Users of the opam tool can install Links by invoking opam install links.

The rest of the paper is structured as follows: §2 presents Exceptional GV and §3 its metatheory; §4 discusses extensions to Exceptional GV; §5 describes the implementation; §6 presents a chat application written in Links; §7 discusses related work; and §8 concludes.

## **EXCEPTIONAL GV**

In this section, we introduce Exceptional GV (henceforth EGV). GV is a core session-typed linear  $\lambda$ -calculus that has a tight correspondence with classical linear logic [Lindley and Morris 2015; 286 Wadler 2014]. EGV is an asynchronous variant of GV with support for failure handling.

Due to GV's close correspondence with classical linear logic, EGV has a strong metatheory, 287 enjoying preservation, global progress, the diamond property, and termination. Much like the 288 simply-typed  $\lambda$ -calculus, this well-behaved core must be extended to be expressive enough to 289 write larger applications. Nonetheless, the core calculus alone is expressive enough to support our 290 291 two-factor authentication example, and to support server applications which gracefully handle disconnection. In §3, we show that cancellation is well-behaved, and does not violate any of the 292 core properties of GV. In §4, following Lindley and Morris [2015, 2017], we extend EGV modularly 293

```
294
```

| 295 | Types             | $A, B, C ::= 1 \mid A \multimap B \mid A + B \mid A \times B \mid S$                                                                     |
|-----|-------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 296 | Session Types     | S,T ::= !A.S   ?A.S   End                                                                                                                |
| 297 | Variables         | x, y                                                                                                                                     |
| 298 | Terms             | $L, M, N ::= x \mid \lambda x.M \mid MN \mid () \mid \text{let}() = M \text{ in } N \mid (M, N) \mid \text{let}(x, y) = M \text{ in } N$ |
| 299 |                   | $ $ inl $M  $ inr $M  $ case $L$ of $\{ inl x \mapsto M; inr y \mapsto N \}$                                                             |
| 300 |                   | fork M   send M N   receive M   close M                                                                                                  |
| 301 |                   | cancel M   raise   try L as x in M otherwise N                                                                                           |
| 302 | Type Environments | $\Gamma ::= \cdot   \Gamma, x : A$                                                                                                       |
| 303 |                   |                                                                                                                                          |

Fig. 3. Syntax

with standard features of our implementation, some of which provide weaker guarantees. Channel cancellation and exceptions are orthogonal to these features.

## 2.1 Integrating Sessions with Exceptions, by Example

Integrating session types with failure handling into a higher-order functional language requires care. Fig. 2 illustrates three important cases: cancellation and exceptions, delegation, and closures. In order to initiate a session, we adopt the **fork** primitive of Lindley and Morris [2015]. Given a term *M* of type  $S \rightarrow 1$ , the term **fork** *M* of type  $\overline{S}$  creates a fresh channel with endpoints *a* of type *S* and *b* of type  $\overline{S}$ , forks a child thread that executes *M a*, and returns endpoint *b*.

*Cancellation and Exceptions.* Fig. 2a forks a thread which immediately cancels its endpoint. The parent attempts to receive, but the message can never arrive so an exception is raised and the **otherwise** clause is invoked.

Delegation. A central feature of  $\pi$ -calculus is *mobility* of names. In session calculi sending an endpoint is known as *session delegation*. The code in Fig. 2b begins by forking a thread and returning endpoint *s*. The child is passed endpoint *t* on which it blocks receiving. Next, the parent forks a second child, yielding endpoint *u*. The second child is passed endpoint *v*, which is immediately discarded using **cancel**. Now the parent thread sends endpoint *s* along *u*. Endpoint *s* will never be received as the peer endpoint *v* of *u* has been cancelled. In turn, this renders *s* irretrievable and an exception is thrown in the first child thread, as it can never receive a value.

*Closures.* It is crucial that cancellation plays nicely with closures. The code in Fig. 2c defines a function f which sends its argument x along s. The parent thread then raises an exception. As s appears in the closure bound to f, which appears in the continuation and is thus discarded, s must be cancelled.

## 2.2 Syntax and Typing Rules for Terms

Fig. 3 gives the syntax of EGV. Types include unit (1), linear functions  $(A \multimap B)$ , linear sums (A + B), linear tensor products  $(A \times B)$ , and session types (S).

Terms include variables (x) and the usual introduction and elimination forms for linear functions, unit, products, and sums. We write M; N as syntactic sugar for let () = M in N and let x = M in Nfor ( $\lambda x.N$ ) M. The standard session typing primitives [Lindley and Morris 2015] are as follows: **fork** M creates a fresh channel with endpoints a of type S and b of type  $\overline{S}$ , forks a child thread that executes M a, and returns endpoint b; **send** M N sends M along endpoint N; **receive** M receives along endpoint M; and **close** M closes an endpoint when a session is complete.

| Term Typin                             | g                                |                                                         |                                         |                                         |                                          |                                                                    |                                                  |                                   | $\Gamma \vdash M : A$            |
|----------------------------------------|----------------------------------|---------------------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------|-----------------------------------|----------------------------------|
|                                        | T-Var                            | -                                                       | Г-Авѕ<br>Г, <i>х</i> : А ⊢              | M: B                                    |                                          | $\begin{array}{l} \text{T-App} \\ \Gamma_1 \vdash M : \end{array}$ | $A \multimap B$                                  | $\Gamma_2 \vdash N : A$           |                                  |
|                                        | $\overline{x:A \vdash x:A}$      | i i                                                     | $\Gamma \vdash \lambda x.M$ :           | $A \multimap B$                         |                                          | Ι                                                                  | $\Gamma_1, \Gamma_2 \vdash M N$                  | : B                               |                                  |
|                                        | T-LetU                           |                                                         |                                         | T-PAIR                                  | - M. A                                   |                                                                    | T-LetPar                                         |                                   | , D                              |
| T-Unit                                 |                                  | $\Gamma_1 \vdash M : \Gamma$<br>$\Gamma_2 \vdash N : A$ |                                         | I                                       | $1 \vdash M : A$<br>$2 \vdash N : B$     |                                                                    | $\Gamma_2, z$                                    | $x:A, y:B \vdash$                 | N:C                              |
| $\overline{\cdot \vdash () : 1}$       | $\overline{\Gamma_1,\Gamma_2}$ + | let () = M in                                           | N:A                                     | $\overline{\Gamma_1,\Gamma_2}$ ⊢        | (M, N):                                  | $A \times B$                                                       | $\overline{\Gamma_1,\Gamma_2} \vdash \mathbf{I}$ | $\mathbf{et}\left( x,y\right) =%$ | $\overline{M \text{ in } N : C}$ |
| $T-Inl \Gamma \vdash l$                | M : A                            | T-Inr<br>Γ⊢∄                                            | M : B                                   | Т-С<br>Г1                               | ASE<br>- L : A + E                       | 3 Г <sub>2</sub> , х                                               | $\mathfrak{c}: A \vdash M : C$                   | $\Gamma_2, y$ :                   | $B \vdash N : C$                 |
| $\Gamma \vdash inl N$                  | M:A+B                            | $\Gamma \vdash \mathbf{inr} l$                          | M:A+B                                   |                                         | $\Gamma_1, \Gamma_2 \vdash \mathbf{c}_3$ | ase L of {                                                         | $\{ inl \ x \mapsto M \}$                        | ; inr $y \mapsto b$               | N}:C                             |
| $T\text{-Fork} \\ \Gamma \vdash M : S$ | S —∘ 1                           | $T\text{-Send} \\ \Gamma_1 \vdash M : A$                | $\Gamma_2 \vdash N$                     | ::!A.S                                  | T-Rec                                    | $\mathbf{v}$<br>$\Gamma \vdash M : ?_{2}$                          | <i>A.S</i>                                       | T-Clo<br>Γ ⊢ .                    | se<br>M : End                    |
| Γ ⊢ <b>fork</b>                        | $M:\overline{S}$                 | $\Gamma_1, \Gamma_2 \vdash s$                           | end M N                                 | : S                                     | $\Gamma \vdash \mathbf{re}$              | eceive M                                                           | $(A \times S)$                                   | $\Gamma \vdash \mathbf{cl}$       | <b>ose</b> <i>M</i> : <b>1</b>   |
| T-C                                    | ANCEL $\Gamma \vdash M : S$      | Т<br>Г                                                  | $-\mathrm{Try}_1 \vdash L : A$          | $\Gamma_2, x: A$                        | $A \vdash M : B$                         | $\Gamma_2 \vdash N$                                                | N : B                                            | T-Raise                           |                                  |
| $\overline{\Gamma} \vdash$             | cancel M:                        | 1 –                                                     | $\Gamma_1, \Gamma_2 \vdash \mathbf{tr}$ | $\mathbf{y} L \mathbf{as} x \mathbf{i}$ | n M othe                                 | rwise N                                                            | : <i>B</i>                                       | · ⊢ raise                         | e : A                            |
| Duality                                |                                  |                                                         |                                         |                                         |                                          |                                                                    |                                                  |                                   | $\overline{S}$                   |
|                                        | $\overline{!A}$                  | $\overline{.S} = ?A.\overline{S}$                       |                                         | $\overline{?A.S} =$                     | $!A.\overline{S}$                        |                                                                    | $\overline{End} = Er$                            | nd                                |                                  |
|                                        |                                  |                                                         |                                         |                                         |                                          |                                                                    |                                                  |                                   |                                  |

Fig. 4. Term Typing and Duality

We introduce three new term constructs to support session typing with failure handling: **cancel**M explicitly discards session endpoint M; **raise** raises an exception; and **try** L **as** x **in** M **otherwise** N evaluates L, on success binding the result to x in M and on failure evaluating N.

Explicit success continuations. Benton and Kennedy [2001] argue that:

From the points of view of programming pragmatics, rewriting and operational semantics, the syntactic construct used for exception handling in ML-like programming languages, and in much theoretical work on exceptions, has subtly undesirable features.

Benton and Kennedy show that explicit success continuations avoid the subtly undesirable features they identify; correspondingly, we adopt their construct. Moreover, explicit success continuations align with the definition of handlers for algebraic effects [Plotkin and Pretnar 2013] that we use in our implementation (§5.4).

*Branching and selection.* Though our implementation supports **select** and **offer** directly, and we use them in examples, we omit them from the core calculus (following Lindley and Morris [2015, 2017]) as they can be encoded using sums and delegation [Dardha et al. 2017; Kobayashi 2003].

Typing. Fig. 4 gives the typing rules for EGV. As usual, linearity is enforced by splitting environments when typing subterms, ensuring T-VAR takes a singleton environment, and leaf rules T-UNIT and T-RAISE take an empty environment. We write  $\Gamma_1$ ,  $\Gamma_2$  to mean the disjoint union of  $\Gamma_1$  and  $\Gamma_2$ . The bulk of the rules are standard for a linear  $\lambda$ -calculus. Session types are related by *duality*. The T-FORK rule forks a thread connected by dual endpoints of a channel. The rules T-SEND, T-RECV, and T-CLOSE capture session-typed communication.

392

368 369 370

371

372

373

374

375

376

377

378

379

380

381 382

383

384

385

Proc. ACM Program. Lang., Vol. POPL, No. 1, Article 1. Publication date: November 2019.

1:8

| 393 | Runtime Types                 | $R ::= S \mid S^{\sharp}$                                                                                                                                          |
|-----|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 394 | Names                         | <i>a</i> , <i>b</i> , <i>c</i>                                                                                                                                     |
| 395 | Terms                         | $M := \cdots \mid a$                                                                                                                                               |
| 396 | Values                        | $U, V, W ::= a \mid \lambda x.M \mid () \mid (V, W) \mid \text{ inl } V \mid \text{ inr } V$                                                                       |
| 397 | Configurations                | $C, \mathcal{D}, \mathcal{E} ::= (va)C \mid C \mid \mathcal{D} \mid \phi M \mid halt \mid 4a \mid a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})$ |
| 398 | Thread Flags                  | $\phi := \bullet \mid \circ$                                                                                                                                       |
| 399 | Top-level threads             | $\mathcal{T} ::= \bullet M \mid halt$                                                                                                                              |
| 400 | Auxiliary threads             | $\mathcal{A} ::= \circ M \mid 4a \mid a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})$                                                             |
| 401 | Type Environments             | $\Gamma ::= \cdots   \Gamma, a : S$                                                                                                                                |
| 402 | Runtime Type Environments     | $\Delta ::= \cdot \mid \Delta, a : R$                                                                                                                              |
| 403 | Evaluation Contexts           | E ::= []   E M   V E                                                                                                                                               |
| 404 |                               | let () = E in M   (E, M)   (V, E)   let (x, y) = E in M                                                                                                            |
| 405 |                               | $ $ inl $E  $ inr $E  $ case $E$ of $\{$ inl $x \mapsto M;$ inr $x \mapsto N\}$                                                                                    |
| 406 |                               | fork E   send E M   send V E   receive E   close E                                                                                                                 |
| 407 |                               | cancel <i>E</i>   try <i>E</i> as <i>x</i> in <i>M</i> otherwise <i>N</i>                                                                                          |
| 400 | Pure Contexts                 | P ::= []   P M   V P                                                                                                                                               |
| 400 |                               | let () = P in M $ $ let (x, y) = P in M $ $ (P, M) $ $ (V, P)                                                                                                      |
| 409 |                               | $ $ inl $P  $ inr $P  $ case $P$ of $\{inl x \mapsto M; inr x \mapsto N\}$                                                                                         |
| 410 |                               | fork P   send P M   send V P   receive P   close P                                                                                                                 |
| 411 |                               | cancel P                                                                                                                                                           |
| 412 | Thread Contexts               | $\mathcal{F} ::= \phi E$                                                                                                                                           |
| 413 | <b>Configuration Contexts</b> | $\mathcal{G} ::= [] \mid (va)\mathcal{G} \mid \mathcal{G} \parallel \mathcal{C}$                                                                                   |
| 414 |                               |                                                                                                                                                                    |
| 415 | Syntactic Sugar               |                                                                                                                                                                    |
| 416 | ž                             | $V \triangleq \ \ a_1 \parallel \cdots \parallel \ \ a_n \ $ where fn $(V) = \{a_i\}_i$                                                                            |
| 417 | Ź-                            | $P \triangleq \notin a_1 \parallel \cdots \parallel \notin a_n \text{ where } fn(P) = \{a_i\}_i$                                                                   |
| 418 | Ź                             | $E \triangleq \notin a_1 \parallel \cdots \parallel \notin a_n$ where $fn(E) = \{a_i\}_i$                                                                          |
| 419 |                               |                                                                                                                                                                    |
| 420 |                               | Fig. 5. Runtime Syntax                                                                                                                                             |
| 421 |                               | - 5. of Hantine officer                                                                                                                                            |

As exceptions do not return values, the rule T-RAISE allows an exception to be given any type *A*. Rule T-TRY embraces explicit success continuations as advocated by Benton and Kennedy [2001], binding a result in *M* if *L* evaluates successfully. The T-CANCEL rule explicitly discards an endpoint. Naïvely implemented, cancellation violates progress: a thread could discard an endpoint, leaving a peer waiting forever. We avoid this pitfall by raising an exception when a communication action would wait forever due to cancellation.

## 2.3 Operational Semantics

<sup>431</sup> We now give a small-step operational semantics for EGV.

*Runtime Syntax.* Fig. 5 shows the runtime syntax of EGV. We write  $S^{\sharp}$  for the type of a channel 433 which can be split into two endpoints of types S and  $\overline{S}$ . Runtime types R are either session types or 434 channel types. We extend the syntax of terms to include names ranged over by a, b, c. Depending 435 on context, a name a is variously used to identify a channel of type  $S^{\sharp}$  and each of its endpoints of 436 type S and  $\overline{S}$ . Values are standard. The semantics makes use of *configurations*, which are similar to 437  $\pi$ -calculus processes: (va)C binds name a in configuration C, and  $C \parallel D$  is the parallel composition 438 of configurations C and D. Program threads take the form  $\phi M$ , where  $\phi$  is a thread flag identifying 439 whether the term is the main thread ( $\bullet$ ), which returns a top-level result, or a *child thread* ( $\circ$ ), which 440

422

423

424

425

426

427

428 429

430

S. Fowler et al.

 $M \longrightarrow_M N$ 

Term Reduction E-LAM  $(\lambda x.M) V \longrightarrow_{M} M\{V/x\}$ E-UNIT  $let () = () in M \longrightarrow_{M} M$ 

444  $let () = () in M \longrightarrow_{M} M$ 445 E-PAIR let (x, y) = (V, W) in  $M \longrightarrow_{M} M\{V/x, W/y\}$ 446 case inl V of {inl  $x \mapsto M$ ; inr  $y \mapsto N$ }  $\longrightarrow_{M} M\{V/x\}$ E-Inl 447 case inr V of {inl  $x \mapsto M$ ; inr  $y \mapsto N$ }  $\longrightarrow_{M} N\{V/y\}$ E-Inr E-VAL try V as x in M otherwise  $N \longrightarrow_{M} M\{V/x\}$ 448  $E[M] \longrightarrow_{\mathsf{M}} E[M'], \text{ if } M \longrightarrow_{\mathsf{M}} M'$ 449 E-LIFT 450 **Configuration Equivalence**  $\mathcal{C}\equiv\mathcal{D}$ 451  $(va)(vb)C \equiv (vb)(va)C$  $\mathcal{C} \parallel \mathcal{D} \equiv \mathcal{D} \parallel \mathcal{C}$  $C \parallel (\mathcal{D} \parallel \mathcal{E}) \equiv (C \parallel \mathcal{D}) \parallel \mathcal{E}$ 452  $C \parallel (va)\mathcal{D} \equiv (va)(C \parallel \mathcal{D}), \quad \text{ if } a \notin \mathsf{fn}(C)$ 453 454  $\circ () \parallel C \equiv C \qquad (va)(vb)( \frac{1}{2} a \parallel \frac{1}{2} b \parallel a(\epsilon) \longleftrightarrow b(\epsilon)) \parallel C \equiv C \\ \hline C \longrightarrow \mathcal{D}$  $a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W}) \equiv b(\overrightarrow{W}) \longleftrightarrow a(\overrightarrow{V})$ 455 **Configuration Reduction** 456 457  $\mathcal{F}[\mathbf{fork}(\lambda x.M)] \longrightarrow (va)(vb)(\mathcal{F}[a] \parallel \circ M\{b/x\} \parallel a(\epsilon) \nleftrightarrow b(\epsilon)), \text{ where } a, b \text{ are fresh}$ E-Fork 458  $\mathcal{F}[\text{send } U a] \parallel a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W}) \longrightarrow \mathcal{F}[a] \parallel a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W} \cdot U)$ E-Send 459  $\mathcal{F}[\text{receive } a] \parallel a(U \cdot \overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W}) \longrightarrow \mathcal{F}[(U, a)] \parallel a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})$ E-Receive 460  $(va)(vb)(\mathcal{F}[close a] \parallel \mathcal{F}'[close b] \parallel a(\epsilon) \longleftrightarrow b(\epsilon)) \longrightarrow \mathcal{F}[()] \parallel \mathcal{F}'[()]$ E-CLOSE 461  $\mathcal{F}[\text{cancel } a] \longrightarrow \mathcal{F}[()] \parallel \frac{1}{2}a$ E-CANCEL 462 E-ZAP 463  $\mathcal{F}[\text{close } a] \parallel \frac{1}{2}b \parallel a(\epsilon) \longleftrightarrow b(\epsilon) \longrightarrow \mathcal{F}[\text{raise}] \parallel \frac{1}{2}a \parallel \frac{1}{2}b \parallel a(\epsilon) \longleftrightarrow b(\epsilon)$ E-CloseZap 464  $\mathcal{F}[\text{receive } a] \parallel \frac{1}{2}b \parallel a(\epsilon) \longleftrightarrow b(\overrightarrow{W}) \longrightarrow \mathcal{F}[\text{raise}] \parallel \frac{1}{2}a \parallel \frac{1}{2}b \parallel a(\epsilon) \longleftrightarrow b(\overrightarrow{W})$ **E-ReceiveZap** 465  $\mathcal{F}[\operatorname{try} P[\operatorname{raise}] \text{ as } x \text{ in } M \text{ otherwise } N] \longrightarrow \mathcal{F}[N] \parallel \oint P$ E-RAISE 466 E-RAISECHILD 467 •*P*[raise]  $\longrightarrow$  halt  $\parallel 4P$ E-RAISEMAIN 468  $\mathcal{G}[\mathcal{C}] \ \longrightarrow \ \mathcal{G}[\mathcal{D}], \quad \text{if } \mathcal{C} \longrightarrow \mathcal{D}$ E-LIFTC 469  $\phi M \longrightarrow \phi M', \quad \text{if } M \longrightarrow_M M'$ E-LIFTM 470 471

Fig. 6. Reduction and Equivalence for Terms and Configurations

does not, and must return the unit value. A configuration has at most one main thread. As well as program threads, configurations include three special forms of thread. A *zapper thread* ( $\frac{1}{2}a$ ) manages an endpoint *a* that has been cancelled, and is used to propagate failure. A *halted thread* (**halt**) arises when the main thread has crashed due to an uncaught exception. A *buffer thread*  $(a(\vec{V}) \leftrightarrow b(\vec{W}))$  models asynchrony:  $\vec{V}$  and  $\vec{W}$  are sequences of values ready to be received along endpoints *a* and *b* respectively. We sometimes find it useful to distinguish top-level threads  $\mathcal{T}$  (main threads and halted threads) from auxiliary threads  $\mathcal{A}$  (child threads, zapper threads, and buffer threads).

*Environments.* We extend type environments  $\Gamma$  to include runtime names of session type and introduce runtime type environments  $\Delta$ , which type both buffer endpoints of session type and channels of type  $S^{\sharp}$  for some *S*, but not object variables.

*Contexts.* Evaluation contexts *E* are set up for standard left-to-right call-by-value evaluation. Pure contexts *P* are those evaluation contexts that include no exception handling frames. Thread

442 443

472

473 474 475

476

477

478

479

480

481

482

483 484

485

486

487

488

<sup>491</sup> contexts  $\mathcal{F}$  support reduction in program threads. Configuration contexts  $\mathcal{G}$  support reduction <sup>492</sup> under *v*-binders and parallel composition.

*Free Names.* We let the meta operation fn(-) denote the set of free names in a term, type environment, buffer environment, value, configuration, pure context, or evaluation context.

*Syntactic Sugar.* We follow the standard convention that parallel composition of configurations associates to the right. We write  $\frac{1}{2}V$ ,  $\frac{1}{2}P$ , and  $\frac{1}{2}E$ , as shorthand for the parallel composition of zapper threads for each free name in values *V*, pure contexts *P*, and evaluation contexts *E*, respectively.

Following prior work on linear functional languages with session types [Gay and Vasconcelos 2010; Lindley and Morris 2015, 2016, 2017], we present the semantics of EGV via a deterministic reduction relation on terms  $(\longrightarrow_M)$ , an equivalence relation on configurations  $(\equiv)$ , and a nondeterministic reduction relation on configurations  $(\longrightarrow)$ . We write  $\Longrightarrow$  for the relation  $\equiv \longrightarrow \equiv$ . Fig. 6 presents reduction and equivalence rules for terms and configurations.

*Term Reduction.* Reduction on terms is standard call-by-value  $\beta$ -reduction.

Configuration Equivalence. A running program can make use of the standard structural  $\pi$ -calculus equivalence rules [Milner 1999] of associativity and commutativity of parallel composition, name restriction reordering, and scope extrusion. Formally, equivalence is defined as the smallest congruence relation satisfying the equivalence axioms in Figure 6. We incorporate a further rule to allow buffers to be treated symmetrically and two garbage collection rules, allowing completed child threads and cancelled empty buffers to be discarded.

*Communication and Concurrency.* The E-FORK rule creates two fresh names for each endpoint of a channel, returning one name and substituting the other in the body of the spawned thread, as well as creating a channel with two empty buffers. The E-SEND and E-RECEIVE rules send to and receive from a buffer. The E-CLOSE rule discards an empty buffer once a session is complete.

*Cancellation.* The E-CANCEL rule cancels an endpoint by creating a zapper thread. The E-ZAP rule ensures that when an endpoint is cancelled, all endpoints in the buffer of the cancelled endpoint are also cancelled: it dequeues a value from the head of the buffer and cancels any endpoints contained within the dequeued value ( $\frac{4}{2}U$ ). It is applied repeatedly until the buffer is empty.

*Raising Exceptions.* Following Mostrous and Vasconcelos [2014], an exception is raised when it would be otherwise impossible for a communication action to succeed. The E-RECEIVEZAP rule raises an exception if an attempt is made to receive along an endpoint whose buffer is empty and whose peer endpoint has been cancelled. Similarly, E-CLOSEZAP raises an exception if an attempt is made to close a channel where the peer endpoint has been cancelled. There is no rule for the case where a thread tries to send a value along a cancelled endpoint; the free names in the communicated value must eventually be cancelled, but this is achieved through E-ZAP. We choose not to raise an exception in this case since to do so would violate confluence, which we discuss in more detail in §3.4. Not raising exceptions on message sends to dead peers is standard behaviour for languages such as Erlang.

Handling Exceptions. The E-RAISE rule invokes the otherwise clause if an exception is raised,
 while also cancelling all endpoints in the enclosing pure context. If an unhandled exception occurs
 in a child thread, then all free endpoints in the evaluation context are cancelled and the thread
 is terminated (E-RAISECHILD). If the exception is in the main thread then all free endpoints are
 cancelled and the main thread reduces to halt (E-RAISEMAIN).

## 540 2.4 Synchrony

As we are interested in writing distributed applications, we consider asynchronous session types.
 However, our semantics adapts straightforwardly to the synchronous setting, where a send to a
 cancelled peer must also raise an exception:

```
E-SYNCCOMM\mathcal{F}[send V a] \parallel \mathcal{F}'[receive a] \longrightarrow \mathcal{F}[a] \parallel \mathcal{F}'[(V, a)]E-SYNCSENDZAP\mathcal{F}[send V a] \parallel \frac{1}{2}a \longrightarrow \mathcal{F}[raise] \parallel \frac{1}{2}V \parallel \frac{1}{2}a \parallel \frac{1}{2}aE-SYNCRECVZAP\mathcal{F}[receive a] \parallel \frac{1}{2}a \longrightarrow \mathcal{F}[raise] \parallel \frac{1}{2}a \parallel \frac{1}{2}a(va)(\frac{1}{2}a \parallel \frac{1}{2}a) \parallel C \equiv C
```

## 3 METATHEORY

Even in the presence of channel cancellation and exceptions, EGV retains GV's strong metatheory [Lindley and Morris 2015]. The central property of session-typed systems is session fidelity: all communication follows the prescribed session types. Session fidelity follows as a corollary of preservation of configuration typing under reduction.

Session calculi with roots in linear logic are deadlock-free as interpreting the logical cut rule as a combination of name restriction and parallel composition necessarily ensures acyclicity [Caires and Pfenning 2010]. It is also possible to use deadlock-freedom to derive a global progress result. We prove that global progress holds even in the presence of channel cancellation. (Our proof is direct, not requiring catalyser processes [Carbone et al. 2014; Mostrous and Vasconcelos 2014].) We also prove that EGV is confluent and terminating.

## 3.1 Runtime Typing

To state our main results we require typing rules for names and configurations. These are given in Fig. 7. The configuration typing judgement has the shape  $\Gamma; \Delta \vdash^{\phi} C$ , which states that under type environment  $\Gamma$ , runtime environment  $\Delta$ , and thread flag  $\phi$ , configuration C is well-typed. We additionally require that  $fn(\Gamma) \cap fn(\Delta) = \emptyset$ . Thread flags ensure that there can be at most one top-level thread which can return a value: • denotes a configuration with a top-level thread and • denotes a configuration without. The main thread returns the result of running a program. Any configuration C such that  $\Gamma; \Delta \vdash^{\bullet} C$  has exactly one main thread or halted thread as a subconfiguration. We write  $\Gamma; \Delta \vdash^{\bullet} C : A$  whenever the derivation of  $\Gamma; \Delta \vdash^{\bullet} C$  contains a subderivation of the form

$$\frac{\Gamma' \vdash M : A}{\Gamma' : \bot \vdash \bullet M} \quad \text{or} \quad \frac{}{ : : \vdash \bullet \text{ halt}}$$

We say that a *C* is a *ground configuration* if there exists *A* such that  $\cdot$ ;  $\cdot \vdash^{\bullet} C : A$  and *A* contains no session types or function types.

576 The T-Nu rule introduces a channel name; T-CONNECT<sub>1</sub> and T-CONNECT<sub>2</sub> connect two config-577 urations over a channel; and T-MIX composes two configurations that share no channels. The 578 latter three rules use the + operator to combine the flags from subconfigurations. The T-MAIN 579 and T-CHILD rules introduce main and child threads. Child threads always return the unit value. 580 The T-HALT rule types the halt configuration, which signifies that an unhandled exception has 581 occurred in the main thread. The T-ZAP rule types a zapper thread, given a single name in the type 582 environment. The T-BUFFER rule ensures that buffers contain values corresponding to the session 583 types of their endpoints. This is the only rule that consumes names from the runtime environment. 584 Buffers rely on two auxiliary judgements. The queue typing judgement  $\Gamma \vdash \overrightarrow{V} : \overrightarrow{A}$  states that under 585 type environment  $\Gamma$ , the sequence of values  $\overrightarrow{V}$  have types  $\overrightarrow{A}$ . The session slicing operator  $S/\overrightarrow{A}$ 586 captures reasoning about session types discounting values contained in the buffer. The session 587

588

544

545

546

547

548 549 550

551

552

553

554

555

556

557

558

559

560

561 562

563

564

565

566

567

568

569

570

| 589                                                                                                                                          | Term Typing                                                                                                                                                                                                                | $\Gamma \vdash M : A$                                                                                                                                                                                           | ] Session Slicing                                                                                                   | $S/\overrightarrow{A}$                                                                                                        | Queue Typing                                                                                                | r                                                                                                                                                                                                        | $\Gamma \vdash \overrightarrow{V} : \overrightarrow{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 590                                                                                                                                          | T-Name                                                                                                                                                                                                                     | E                                                                                                                                                                                                               | - 1                                                                                                                 |                                                                                                                               | ~ 71 0                                                                                                      |                                                                                                                                                                                                          | $\rightarrow \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 591                                                                                                                                          |                                                                                                                                                                                                                            |                                                                                                                                                                                                                 | $S/\epsilon \rightarrow$                                                                                            | $= S \longrightarrow$                                                                                                         |                                                                                                             | $\Gamma_1 \vdash V : A$                                                                                                                                                                                  | $\Gamma_2 \vdash V : A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 592                                                                                                                                          | $a:S \vdash a$                                                                                                                                                                                                             | a:5                                                                                                                                                                                                             | $!A.S/A \cdot \dot{A}$                                                                                              | $= S/\dot{A}$                                                                                                                 | $\cdot \vdash \epsilon : \epsilon$                                                                          | $\Gamma_1, \Gamma_2 \vdash V$                                                                                                                                                                            | $\overrightarrow{V}:A\cdot\overrightarrow{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 593                                                                                                                                          | Configuration Tw                                                                                                                                                                                                           | ning                                                                                                                                                                                                            |                                                                                                                     |                                                                                                                               |                                                                                                             |                                                                                                                                                                                                          | $\Gamma \cdot \Lambda \models \phi C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 594                                                                                                                                          | Configuration Ty                                                                                                                                                                                                           | ping                                                                                                                                                                                                            |                                                                                                                     |                                                                                                                               |                                                                                                             |                                                                                                                                                                                                          | 1,ΔF <sup>*</sup> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 595                                                                                                                                          |                                                                                                                                                                                                                            | T-NU                                                                                                                                                                                                            | t do                                                                                                                | T-Mix                                                                                                                         |                                                                                                             | da o                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 596                                                                                                                                          |                                                                                                                                                                                                                            | $\Gamma; \Delta, a: S$                                                                                                                                                                                          | $F \vdash \mathcal{C}$                                                                                              | $\Gamma_1; \Delta_1 \vdash^{\varphi_1}$                                                                                       | $C = \Gamma_2; \Delta_2$                                                                                    | $\vdash^{\varphi_2} \mathcal{D}$                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 597                                                                                                                                          |                                                                                                                                                                                                                            | $\Gamma; \Delta \vdash^{\phi}$                                                                                                                                                                                  | (va)C                                                                                                               | $\Gamma_1, \Gamma_2; \Delta$                                                                                                  | $_1, \Delta_2 \vdash^{\phi_1 + \phi_2} C$                                                                   | $\mathbb{C} \parallel \mathcal{D}$                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 598                                                                                                                                          |                                                                                                                                                                                                                            |                                                                                                                                                                                                                 |                                                                                                                     |                                                                                                                               |                                                                                                             |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 599                                                                                                                                          | T-Connec                                                                                                                                                                                                                   | CT <sub>1</sub>                                                                                                                                                                                                 |                                                                                                                     | T-Con                                                                                                                         | NECT <sub>2</sub>                                                                                           |                                                                                                                                                                                                          | da a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 600                                                                                                                                          | $\Gamma_1, a: S; \Delta$                                                                                                                                                                                                   | $A_1 \vdash^{\varphi_1} C \qquad 1$                                                                                                                                                                             | $\Delta_2; \Delta_2, a: S \vdash^{\varphi_2} \mathcal{D}$                                                           | $\Gamma_1; \Delta_1$                                                                                                          | $a: S \vdash^{\varphi_1} C$                                                                                 | $\Gamma_2, a: S; \Delta_2$                                                                                                                                                                               | $_{2} \vdash^{\varphi_{2}} \mathcal{D}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 601                                                                                                                                          | $\Gamma_1, \Gamma_2;$                                                                                                                                                                                                      | $\Delta_1, \Delta_2, a: S^{\sharp}$ i                                                                                                                                                                           | $+^{\phi_1+\phi_2} \mathcal{C} \parallel \mathcal{D}$                                                               | Γ <sub>1</sub> ,                                                                                                              | $\Gamma_2; \Delta_1, \Delta_2, a:$                                                                          | $S^{\sharp} \vdash^{\phi_1 + \phi_2} C \mid$                                                                                                                                                             | $\parallel \mathcal{D}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 602                                                                                                                                          |                                                                                                                                                                                                                            |                                                                                                                                                                                                                 |                                                                                                                     |                                                                                                                               |                                                                                                             |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                              |                                                                                                                                                                                                                            |                                                                                                                                                                                                                 |                                                                                                                     |                                                                                                                               | TD                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 603                                                                                                                                          |                                                                                                                                                                                                                            |                                                                                                                                                                                                                 |                                                                                                                     |                                                                                                                               | T-Buff                                                                                                      | $\stackrel{\text{ER}}{\rightarrow}$ —                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 603<br>604                                                                                                                                   | T-Main                                                                                                                                                                                                                     | T-CHILD                                                                                                                                                                                                         |                                                                                                                     |                                                                                                                               | T-Buff                                                                                                      | $\overrightarrow{S/A} = \overline{S'}$                                                                                                                                                                   | $\overrightarrow{B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 603<br>604<br>605                                                                                                                            | $\begin{array}{l} \text{T-Main} \\ \Gamma \vdash M : A \end{array}$                                                                                                                                                        | $T\text{-}C\text{HILD}$ $\Gamma \vdash M : 1$                                                                                                                                                                   | T-Halt                                                                                                              | T-Zap                                                                                                                         | T-Buff $\Gamma_1$ +                                                                                         | $\overrightarrow{S/A} = \overrightarrow{S'}$ $\overrightarrow{V} : \overrightarrow{A} \qquad I$                                                                                                          | $\overrightarrow{\overrightarrow{B}}_{2} \vdash \overrightarrow{W} : \overrightarrow{B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 603<br>604<br>605<br>606<br>607                                                                                                              | $\frac{\Gamma \text{-Main}}{\Gamma; \cdot \vdash^{\bullet} \bullet M}$                                                                                                                                                     | $\frac{\Gamma \text{-} \text{Child}}{\Gamma; \cdot \vdash^{\circ} \circ M}$                                                                                                                                     | T-HALT<br>                                                                                                          | $\frac{\text{T-ZAP}}{a:S;\cdot\vdash^{\circ}\notin a}$                                                                        | $\frac{\Gamma_{1}}{\Gamma_{1},\Gamma_{2};a}$                                                                | $\overrightarrow{S/A} = \overrightarrow{S'}$<br>- $\overrightarrow{V} : \overrightarrow{A} = \overrightarrow{S'}$<br>$a : S, b : S' \vdash^{\circ}$                                                      | $\frac{\overrightarrow{B}}{a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 603<br>604<br>605<br>606<br>607<br>608                                                                                                       | $\frac{\Gamma \cdot M \text{AIN}}{\Gamma; \cdot \vdash \bullet M}$<br>Flag Combination                                                                                                                                     | $\frac{\Gamma - CHILD}{\Gamma \vdash M : 1}$ $\frac{\Gamma \vdash M : 1}{\Gamma; \cdot \vdash^{\circ} \circ M}$                                                                                                 | $\frac{\text{T-HALT}}{\cdot;\cdot \vdash^{\bullet} \text{halt}}$ $\phi_1 + \phi_2 = \phi_3$                         | $\frac{\text{T-ZAP}}{a:S;\cdot\vdash^\circ\notin a}$ Sessi                                                                    | T-BUFF<br>$\frac{\Gamma_1 + \Gamma_2; a}{\Gamma_1, \Gamma_2; a}$ on Type Reduc                              | $ \begin{array}{l} \text{ER} & \\ S/\overrightarrow{A} = \overrightarrow{S'} \\ -\overrightarrow{V} : \overrightarrow{A} & \text{I} \\ \hline u : S, b : S' \vdash^{\circ} \\ \text{ction} \end{array} $ | $ \frac{\overrightarrow{B}}{\overrightarrow{C}_{2} \vdash \overrightarrow{W} : \overrightarrow{B}} = \overline{a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})} $ $ \frac{\overrightarrow{S} \longrightarrow S'}{\overrightarrow{S}} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 603<br>604<br>605<br>606<br>607<br>608<br>609                                                                                                | $\frac{\Gamma \cdot M \times N}{\Gamma; \cdot \vdash^{\bullet} \cdot M}$ Flag Combination                                                                                                                                  | T-CHILD<br>$\frac{\Gamma \vdash M : 1}{\Gamma; \cdot \vdash^{\circ} \circ M}$                                                                                                                                   | $\frac{\text{T-HALT}}{\cdot;\cdot \vdash^{\bullet} \text{halt}}$ $\phi_1 + \phi_2 = \phi_3$                         | $\frac{\text{T-ZAP}}{a:S;\cdot \vdash^{\circ} \oint a}$ Sessi                                                                 | T-BUFF<br>$\frac{\Gamma_1 + \Gamma_2; a}{\Gamma_1, \Gamma_2; a}$ on Type Reduce<br>$?A.S \longrightarrow S$ | ER<br>$S/\vec{A} = S'$<br>$-\vec{V}:\vec{A}$ I<br>$a:S,b:S' \vdash^{\circ}$<br>ction<br>!A.S                                                                                                             | $ \frac{\overrightarrow{B}}{\overrightarrow{B}} $ $ \frac{\overrightarrow{C}_{2} + \overrightarrow{W} : \overrightarrow{B}}{a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})} $ $ \frac{\overrightarrow{S} \longrightarrow S'}{\overrightarrow{S} \longrightarrow S} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>603</li> <li>604</li> <li>605</li> <li>606</li> <li>607</li> <li>608</li> <li>609</li> <li>610</li> </ul>                           | $T-MAIN$ $\frac{\Gamma \vdash M : A}{\Gamma; \cdot \vdash^{\bullet} \bullet M}$ Flag Combination $\bullet + \circ = \bullet$ $\circ + \circ = \circ$                                                                       | T-CHILD<br>$\frac{\Gamma \vdash M : 1}{\Gamma; \cdot \vdash^{\circ} \circ M}$                                                                                                                                   | $T-HALT$ $\overline{\cdot;\cdot \vdash^{\bullet} halt}$ $\phi_1 + \phi_2 = \phi_3$ $\bullet$ defined                | $\frac{\text{T-ZAP}}{a:S;\cdot\vdash^{\circ} \notin a}$ Sessi                                                                 | T-BUFF<br>$\frac{\Gamma_1 + \Gamma_2; a}{\Gamma_1, \Gamma_2; a}$ on Type Reduce<br>$?A.S \longrightarrow S$ | ER<br>$S/\vec{A} = \vec{S'}$<br>$-\vec{V}:\vec{A}$ I<br>$i:S,b:S' \vdash^{\circ}$<br>ction<br>!A.S                                                                                                       | $ \frac{\overrightarrow{B}}{\overrightarrow{B}} = \overrightarrow{B} = \overrightarrow{B} $ $ \frac{\overrightarrow{V} : \overrightarrow{B}}{a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})} = \overrightarrow{S} = \overrightarrow{S} $ $ \frac{\overrightarrow{S} \longrightarrow S}{\overrightarrow{S}} = \overrightarrow{S} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>603</li> <li>604</li> <li>605</li> <li>606</li> <li>607</li> <li>608</li> <li>609</li> <li>610</li> <li>611</li> <li>612</li> </ul> | T-MAIN<br>$\frac{\Gamma \vdash M : A}{\Gamma; \cdot \vdash^{\bullet} \bullet M}$ Flag Combination<br>$\bullet + \circ = \bullet$ $\circ + \circ = \circ$ Environment Red                                                   | T-CHILD<br>$\frac{\Gamma \vdash M : 1}{\Gamma; \cdot \vdash^{\circ} \circ M}$ $\circ + \bullet =$ $\bullet + \bullet \text{ un}$ Huction                                                                        | $\frac{\text{T-HALT}}{\because; \cdot \vdash^{\bullet} \text{ halt}}$ $\phi_1 + \phi_2 = \phi_3$ • defined          | $\frac{\text{T-ZAP}}{a:S;\cdot\vdash^{\circ} \notin a}$ Sessi                                                                 | T-BUFF<br>$\frac{\Gamma_1 + \Gamma_2; a}{\Gamma_1, \Gamma_2; a}$ on Type Reduce<br>$?A.S \longrightarrow S$ | ER<br>$S/\vec{A} = S'$<br>$-\vec{V}:\vec{A}$ I<br>$a:S,b:S' \vdash^{\circ}$<br>ction<br>!A.S                                                                                                             | $ \frac{\overrightarrow{B}}{\overrightarrow{B}} $ $ \frac{\overrightarrow{C}}{2} \vdash \overrightarrow{W} : \overrightarrow{B} $ $ \frac{\overrightarrow{C}}{a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})} $ $ \frac{\overrightarrow{S} \longrightarrow S'}{\overrightarrow{S}} $ $ \overline{S} \longrightarrow S $ $ \overline{\Gamma; \Delta \longrightarrow \Gamma'; \Delta'} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 603<br>604<br>605<br>606<br>607<br>608<br>609<br>610<br>611<br>612<br>613                                                                    | T-MAIN<br>$\frac{\Gamma \vdash M : A}{\Gamma; \cdot \vdash \bullet \cdot M}$ Flag Combination<br>$\bullet + \circ = \bullet$ $\circ + \circ = \circ$ Environment Red<br>S -                                                | T-CHILD<br>$\frac{\Gamma \vdash M : 1}{\Gamma; \cdot \vdash^{\circ} \circ M}$ $\circ + \bullet =$ $\bullet + \bullet \text{ un}$ Huction<br>$\rightarrow S'$                                                    | T-HALT<br>$\therefore$ ; $\cdot \vdash^{\bullet}$ halt<br>$\phi_1 + \phi_2 = \phi_3$<br>endefined                   | $\frac{\text{T-ZAP}}{a:S;\cdot\vdash^{\circ}\notin a}$ Sessi<br>$\longrightarrow S'$                                          | T-BUFF<br>$\frac{\Gamma_1 + \Gamma_2}{\Gamma_1, \Gamma_2; a}$ on Type Reduce<br>?A.S $\longrightarrow S$    | ER<br>$S/\overrightarrow{A} = S'$ $-\overrightarrow{V}:\overrightarrow{A} = I$ $i: S, b: S' \vdash^{\circ}$ ction<br>$!A.S$ $[$ $S \longrightarrow S'$                                                   | $ \frac{\overrightarrow{B}}{\overrightarrow{B}} = \overrightarrow{W} : \overrightarrow{B} = \overrightarrow{B} = \overrightarrow{A} = \overrightarrow{B} = \overrightarrow{B}$ |
| 603<br>604<br>605<br>606<br>607<br>608<br>609<br>610<br>611<br>612<br>613<br>614<br>615                                                      | T-MAIN<br>$\frac{\Gamma \vdash M : A}{\Gamma; \cdot \vdash^{\bullet} \bullet M}$ Flag Combination<br>$\bullet + \circ = \bullet$ $\circ + \circ = \circ$ Environment Red<br>$\frac{S - \Gamma}{\Gamma, a : S; \Delta - V}$ | T-CHILD<br>$\frac{\Gamma \vdash M : 1}{\Gamma; \cdot \vdash^{\circ} \circ M}$ $0 \qquad \circ + \bullet =$ $\bullet + \bullet \text{ understand}$ $\longrightarrow S'$ $\longrightarrow \Gamma, a : S'; \Delta$ | $\frac{\text{T-HALT}}{\cdot;\cdot \vdash^{\bullet} \text{ halt}}$ $\frac{\phi_1 + \phi_2 = \phi_3}{\text{defined}}$ | $\frac{\text{T-ZAP}}{a: S; \cdot \vdash^{\circ} \notin a}$ Sessi $\longrightarrow S'$ $\longrightarrow \Gamma; \Delta, a: S'$ | T-BUFF<br>$\frac{\Gamma_1 + \Gamma_2; a}{\Gamma_1, \Gamma_2; a}$ on Type Reduce<br>$?A.S \longrightarrow S$ | ER<br>$S/\vec{A} = S'$ $-\vec{V}: \vec{A} \qquad I$ $i: S, b: S' \vdash^{\circ}$ ction $!A.S$ $\begin{bmatrix} S \longrightarrow S' \\ a: S^{\sharp} \longrightarrow \Gamma; \end{bmatrix}$              | $\overline{\overrightarrow{B}}$ $\overline{\overrightarrow{B}}$ $\overline{\overrightarrow{B}}$ $\overline{\overrightarrow{A}}$ $\overline{\overrightarrow{V}} \leftrightarrow \overrightarrow{B}$ $\overline{\overrightarrow{A}}$ $\overline{\overrightarrow{V}} \leftrightarrow \overrightarrow{B}$ $\overline{\overrightarrow{S}} \rightarrow \overrightarrow{S}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Fig. 7. Runtime Typing

types of two buffer endpoints are compatible if they are dual up to values contained in the buffer. The partiality of the slicing operator coupled with the duality constraint ensures that at least one queue in a buffer is always empty. Appendix A shows an example configuration typing derivation.

#### 3.2 Preservation

617

618 619

620

621

622 623

624

625

626 627

628

629

630

631 632

633

634

635

636 637 Preservation for the functional fragment of EGV is standard.

LEMMA 3.1 (PRESERVATION (TERMS)). If  $\Gamma \vdash M : A$  and  $M \longrightarrow_M M'$ , then  $\Gamma \vdash M' : A$ .

Given a relation  $\mathcal{R}$ , we write  $\mathcal{R}^{?}$  for its reflexive closure. We write  $\Psi$  for the restriction of type environments  $\Gamma$  to contain runtime names but no variables:

 $\Psi ::= \cdot \mid \Psi, a : S$ 

Preservation of typing by configuration reduction holds only for closed configurations.

THEOREM 3.2 (PRESERVATION). If  $\Psi; \Delta \vdash^{\phi} C$  and  $C \longrightarrow C'$ , then there exist  $\Psi', \Delta'$  such that  $\Psi; \Delta \longrightarrow^{?} \Psi'; \Delta'$  and  $\Psi'; \Delta' \vdash^{\phi} C'$ .

PROOF. By induction on the derivation of  $C \longrightarrow C'$ , making use of Lemma 3.1, and lemmas for subconfiguration typeability and replacement. The proof cases can be found in Appendix C.1.  $\Box$ 

1:14

Typing and Configuration Equivalence. As is common in logically-inspired session-typed functional languages [Lindley and Morris 2015, 2017], typeability of configurations is *not* preserved by equivalence. Consider  $\Gamma; \Delta \vdash^{\phi} (va)(vb)(C \parallel (\mathcal{D} \parallel \mathcal{E}))$  with  $a \in fn(C)$ ,  $b \in fn(\mathcal{D})$ , and  $a, b \in fn(\mathcal{E})$ . But  $\Gamma; \Delta \vdash^{\phi} (va)(vb)((C \parallel \mathcal{D}) \parallel \mathcal{E})$ . Fortunately this looseness of the equivalence relation is unproblematic: we may always safely re-associate parallel composition (for example,  $\Gamma; \Delta \vdash^{\phi} (va)(vb)((C \parallel \mathcal{E}) \parallel \mathcal{D})$ ; see Appendix C.1), and any reduction sequence which uses ill-typed equivalences may be replaced by one that does not.

<sup>645</sup> <sup>646</sup> THEOREM 3.3 (PRESERVATION MODULO EQUIVALENCE). If  $\Psi$ ;  $\Delta \vdash^{\phi} C, C \equiv \mathcal{D}$ , and  $\mathcal{D} \longrightarrow \mathcal{D}'$ , then:

(1) There exists some  $\mathcal{E} \equiv \mathcal{D}$  and some  $\mathcal{E}'$  such that  $\Psi; \Delta \vdash^{\phi} \mathcal{E}$  and  $\mathcal{E} \longrightarrow \mathcal{E}'$ 

(2) There exist  $\Psi', \Delta'$  such that  $\Psi; \Delta \longrightarrow^{?} \Psi'; \Delta'$  and  $\Psi'; \Delta' \vdash^{\phi} \mathcal{E}'$ 

 $_{649} \qquad (3) \ \mathcal{D}' \equiv \mathcal{E}'$ 

654

662

663

664

665

666

667

668 669

670

671

672

673

674

675 676

677

678

679 680 681

682

683 684

685 686

PROOF. The only non-trivial reductions are those involving a synchronisation with a buffer
 (E-SEND, E-RECEIVE, E-CLOSE, E-ZAP, E-CLOSEZAP, E-RECEIVEZAP). The only equivalence rule that
 can lead to an ill-typed configuration is associativity of parallel composition

 $\mathcal{C} \parallel (\mathcal{D} \parallel \mathcal{E}) \equiv (\mathcal{C} \parallel \mathcal{D}) \parallel \mathcal{E}$ 

where both compositions arise from the T-CONNECT<sub>1</sub> and T-CONNECT<sub>2</sub> rules. The only reason to apply the associativity rule from left-to-right is to enable threads inside C and  $\mathcal{D}$  to synchronise. But for synchronisation to be possible there must exist a name a such that  $a \in fn(C)$  and  $a \in fn(\mathcal{D})$ . Because the left-hand-side of the equation is well-typed, we know that C and  $\mathcal{E}$  have no names in common, that  $\mathcal{D}$  and  $\mathcal{E}$  share a name, and that the right-hand-side must be well-typed as there is still exactly one channel connecting each of the parallel compositions. The argument for applying the rule from right-to-left is symmetric. In summary, any ill-typed use of equivalence is useless.  $\Box$ 

## 3.3 Progress

To prove that EGV enjoys a strong notion of progress we identify a *canonical form* for configurations. We prove that every well-typed configuration is equivalent to a well-typed configuration in canonical form, and that ground configurations can always either reduce, or are equivalent to either a value or **halt**.

The functional fragment of EGV enjoys progress.

LEMMA 3.4 (PROGRESS: OPEN TERMS). If  $\Psi \vdash M : A$ , then either:

- M is a value;
- there exists some M' such that  $M \longrightarrow_M M'$ ; or
- *M* has the form *E*[*M*'], where *M*' is a session typing primitive of the form: **fork** *V*, **send** *V W*, **receive** *V*, **close** *V*, or **cancel** *V*.

PROOF. By induction on the derivation of  $\Psi \vdash M : A$ .

To reason about progress of configurations, we characterise *canonical forms*, which make explicit the property that at most one name is shared between threads. Recall that  $\mathcal{A}$  ranges over auxiliary threads and  $\mathcal{T}$  over top-level threads (Fig. 5). Let  $\mathcal{M}$  range over configurations of the form:

$$\mathcal{A}_1 \parallel \cdots \parallel \mathcal{A}_m \parallel \mathcal{T}$$

Definition 3.5 (Canonical Form). A configuration C is in canonical form if there is a sequence of names  $a_1, \ldots, a_n$ , a sequence of configurations  $\mathcal{A}_1, \ldots, \mathcal{A}_n$ , and a configuration  $\mathcal{M}$ , such that:

$$C = (va_1)(\mathcal{A}_1 \parallel (va_2)(\mathcal{A}_2 \parallel \cdots \parallel (va_n)(\mathcal{A}_n \parallel \mathcal{M}) \ldots))$$

where  $a_i \in fn(\mathcal{A}_i)$  for each  $i \in 1..n$ .

Proc. ACM Program. Lang., Vol. POPL, No. 1, Article 1. Publication date: November 2019.

687

The following lemma implies that communication topologies are always acyclic.

688 LEMMA 3.6. If  $\Gamma$ ;  $\Delta \vdash^{\phi} C$  and  $C = \mathcal{G}[\mathcal{D} \parallel \mathcal{E}]$ , then  $fn(\mathcal{D}) \cap fn(\mathcal{E})$  is either  $\emptyset$  or  $\{a\}$  for some a. 689 **PROOF.** By induction on the derivation of  $\Gamma; \Delta \vdash^{\phi} C$ ; the only interesting rules are those for 690 parallel composition. As the environments are well-formed,  $fn(\Gamma) \cap fn(\Delta) = \emptyset$ . Thus, T-CONNECT<sub>1</sub> 691 and T-CONNECT<sub>2</sub> allow exactly one name to be shared, whereas T-MIX forbids sharing of names. 692 693 All well-typed configurations can be written in canonical form. 694 THEOREM 3.7 (CANONICAL FORMS). Given C such that  $\Gamma; \Delta \vdash^{\bullet} C$ , there exists some  $\mathcal{D} \equiv C$  such 695 that  $\Gamma; \Delta \vdash^{\bullet} \mathcal{D}$  and  $\mathcal{D}$  is in canonical form. 696 697 **PROOF.** By induction on the count of *v*-bound variables, following Lindley and Morris [2015] and 698 making use of Lemma 3.6. The additional features of EGV do not change the essential argument. 699 The full proof can be found in Appendix C.2. 700 Definition 3.8. We say that term M is ready to perform an action on name a if M is about to send 701 on, receive on, close, or cancel *a*. Formally: 702 703  $\operatorname{ready}(a, M) \triangleq \exists E.(M = E[\operatorname{send} V a]) \lor (M = E[\operatorname{receive} a]) \lor (M = E[\operatorname{close} a]) \lor (M = E[\operatorname{cancel} a])$ 704 Using the notion of a ready thread, we may classify a notion of progress for open configurations. 705 THEOREM 3.9 (PROGRESS: OPEN). Suppose  $\Psi$ ;  $\Delta \vdash C$ , where C is in canonical form. 706 Let  $C = (va_1)(\mathcal{A}_1 \parallel (va_2)(\mathcal{A}_2 \parallel \cdots \parallel (va_n)(\mathcal{A}_n \parallel \mathcal{M}))\dots))$ . 707 Either there exists some C' such that  $C \Longrightarrow C'$ , or: 708 709 (1) For  $1 \leq i \leq n$ , each auxiliary thread  $\mathcal{A}_i$  is either: 710 (a) a child thread  $\circ M$  for which there exists  $a \in \{a_i \mid 1 \le i \le i\} \cup fn(\Psi)$  such that ready(a, M); 711 (b) a zapper thread  $\frac{1}{2}a_i$ ; or 712 (c) a buffer. 713 (2)  $\mathcal{M} = \mathcal{R}'_1 \parallel \cdots \parallel \mathcal{R}'_m \parallel \mathcal{T}$  such that for  $1 \leq j \leq m$ : 714 (a)  $\mathcal{A}'_{i}$  is either: 715 (i) a child thread  $\circ N$  with N = () or ready(a, N) for some  $a \in \{a_i \mid 1 \le i \le n\} \cup fn(\Psi) \cup fn(\Delta)$ ; 716 (ii) a zapper thread  $\frac{1}{2}a$  for some  $a \in \{a_i \mid 1 \le i \le n\} \cup fn(\Psi) \cup fn(\Delta)$ ; or 717 (iii) a buffer. 718 (b) Either  $\mathcal{T} = \bullet N$ , where N is either a value or ready(a, N) for some  $a \in \{a_i \mid 1 \leq i \leq i \leq i\}$ 719 n}  $\cup$  fn( $\Psi$ )  $\cup$  fn( $\Delta$ ); or  $\mathcal{T}$ = **halt**. 720 PROOF. The result follows from a more verbose, but finer-grained, property which we prove by 721 induction on the derivation of  $\Psi$ ;  $\Delta \vdash^{\bullet} C$ . Full details are in Appendix C.3. 722 723 This theorem tells us that open reduction cannot "go wrong". A progress theorem states that 724 either reduction is possible or the configuration is a value. Conditions 1(a)(b)(c) and 2(a)(b) constitute 725 a suitable generalisation of 'value'. 726 By restricting attention to closed environments, we obtain a tighter progress property. 727 THEOREM 3.10 (PROGRESS: CLOSED). Suppose  $:; \cdot \vdash^{\bullet} C$  where C is in canonical form. 728 Let  $C = (va_1)(\mathcal{A}_1 \parallel (va_2)(\mathcal{A}_2 \parallel \cdots \parallel (va_n)(\mathcal{A}_n \parallel \mathcal{M}) \dots)).$ 729 Either there exists some C' such that  $C \Longrightarrow C'$ , or: 730 (1) For  $1 \le i \le n$ , each auxiliary thread  $\mathcal{A}_i$  is either: 731 (a) a child thread  $\circ M$  for some M such that ready $(a_i, M)$ ; or 732

- (b) a zapper thread  $\frac{1}{2}a_i$ ; or
- 734 (c) a buffer.
- 735

## (2) Either $\mathcal{M} = \bullet W$ for some value W, or $\mathcal{M} = halt$ .

The above progress results do not specifically mention deadlock. However, Lemma 3.6 ensures deadlock-freedom. Nevertheless, communication can still be blocked if an endpoint appears in the value returned by the main thread. A conservative way of disallowing endpoints in the result is to insist that the return type of the program be free of session types and function types (closures may capture endpoints). All configurations of such a programs are ground configurations.

THEOREM 3.11 (GLOBAL PROGRESS). Suppose C is a ground configuration. Either there exists some C' such that  $C \Longrightarrow C'$ ; or  $C \equiv \bullet V$ ; or  $C \equiv halt$ .

**PROOF.** As a consequence of Theorem 3.10, either there exists some C' such that  $C \Longrightarrow C'$ , or  $C \Longrightarrow$  and each thread  $\mathcal{A}_i$  must be a zapper, a buffer, or ready to perform an action. If  $C \Longrightarrow$ , since C is ground, by by Lemma 3.6, we have that no thread can be ready to perform an action. Thus, each  $\mathcal{A}_i$  must be either  $\circ$ (), a zapper, or an empty buffer. The result then follows by the garbage collection congruences of Fig. 6. П

#### 3.4 Confluence

EGV enjoys a strong form of confluence known as the diamond property [Barendregt 1984].

THEOREM 3.12 (DIAMOND PROPERTY). If  $\Psi; \Delta \vdash^{\phi} C$ , and  $C \Longrightarrow \mathcal{D}_1$ , and  $C \Longrightarrow \mathcal{D}_2$ , then either  $\mathcal{D}_1 \equiv \mathcal{D}_2$ , or there exists some  $\mathcal{D}_3$  such that  $\mathcal{D}_2 \Longrightarrow \mathcal{D}_3$  and  $\mathcal{D}_2 \Longrightarrow \mathcal{D}_3$ .

**PROOF.** First, note that  $\longrightarrow_{M}$  is entirely deterministic and hence confluent due to the call-byvalue, left-to-right ordering imposed by evaluation contexts. By linearity, we know that endpoints to different buffers may not be shared, so it follows that communication actions on different channels may be performed in any order. Asynchrony and cancellation introduce two critical pairs which may be resolved in a single step; see Appendix C.4 for details. 

Remark. The system becomes non-confluent if we choose to raise an exception when sending to a cancelled buffer. Suppose that instead of the current semantics, we were to replace E-SEND with the following two rules:

$$(vb)(\mathcal{F}[\mathbf{send}\ U\ a] \parallel a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W}) \parallel \phi M) \longrightarrow (vb)(\mathcal{F}[a] \parallel a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W} \cdot U) \parallel \phi M)$$
  
$$\mathcal{F}[\mathbf{send}\ U\ a] \parallel \frac{1}{2}b \parallel a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W}) \longrightarrow \mathcal{F}[\mathbf{raise}] \parallel \frac{1}{2}b \parallel \frac{1}{2}U \parallel a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})$$

Then, sending and cancelling peer endpoints of a buffer results in a non-convergent critical pair:

then, sending and cancering peer energonic  $(vb)(\mathcal{F}[\mathsf{send}\ U\ a] \parallel \mathcal{F}'[\mathsf{cancel}\ b] \parallel a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W}))$   $(vb)(\mathcal{F}[a] \parallel \mathcal{F}'[\mathsf{cancel}\ b] \parallel a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W} \cdot U)) \qquad (vb)(\mathcal{F}[\mathsf{send}\ U\ a] \parallel \mathcal{F}'[()] \parallel \pounds b \parallel a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W}))$  $(vb)(\mathcal{F}[a] \parallel \mathcal{F}'[()] \parallel \frac{1}{2}b \parallel a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W} \cdot U)) \qquad (vb)(\mathcal{F}[\mathbf{raise}] \parallel \mathcal{F}'[()] \parallel \frac{1}{2}b \parallel \frac{1}{2}U \parallel a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W}))$ 

In either case, the endpoints contained in U will still eventually be cancelled, thus preservation and global progress still hold. However, the lack of confluence affects exactly when the exception is raised in context  $\mathcal{F}$ . This decision has practical significance, in that it characterises the race between sending a message and propagating a cancellation notification.

#### 3.5 Termination

As EGV is linear, it has an elementary strong normalisation proof.

THEOREM 3.13 (STRONG NORMALISATION). If  $\Psi$ ;  $\Delta \vdash^{\phi} C$ , then there are no infinite  $\Longrightarrow$  reduction sequences from C.

783 784

Proc. ACM Program. Lang., Vol. POPL, No. 1, Article 1. Publication date: November 2019.

736 737

738

739

740

741

742

743

744 745

746

747

748

749

750 751

752

753

754

755 756

757

758

759

760

761

762

763

764 765 766

767

773 774

775

776

777

778 779

780

781

PROOF. Let the size of a configuration be the sum of the sizes of the abstract syntax trees of all of the terms contained in its main threads, child threads, and buffers, modulo exhaustively applying the garbage collection equivalences from left-to-right. The size of a configuration is invariant under  $\equiv$  and strictly decreases under  $\rightarrow$ , hence  $\implies$  reduction must always terminate. П

We conjecture that the strong normalisation result continues to hold in the presence of unrestricted types or shared channels for session initiation, but the proof technique is necessarily more involved. We believe that a logical relations argument along the lines of Pérez et al. [2012] or a CPS translation along the lines of Lindley and Morris [2016] would suffice.

## **EXTENSIONS**

785

786

787

788

789

790

791

792

793 794

795

796

811

812 813

814

815

816

817

818

819 820

821 822

823

824

825

826 827 828

#### **User-defined Exceptions with Payloads** 4.1

797 In order to focus on the interplay between exceptions and session types we have thus far considered 798 handling a single kind of exception. In practice it can be useful to distinguish between multiple kinds of user-defined exception, each of which may carry a payload. 799

Consider again handling the exception in checkDetails. An exception may arise if the database 800 is corrupt, or if there are too many connections. We might like to handle each case separately: 801

| 802 | A                                                                           |
|-----|-----------------------------------------------------------------------------|
| 803 | $exnServer4(s) \triangleq$                                                  |
| 005 | let ((username, password), s) = receive s in                                |
| 804 | try checkDetails(username, password) as res in                              |
| 805 | if rection lat $s = solact Authenticated s in serverBody(s)$                |
| 806 | in residient let's – select Authenticated's in selver body(s)               |
| 807 | else let s = select AccessDenied s in close s                               |
| 007 | unless                                                                      |
| 808 | DBCorrupt(y) $\mapsto$ cancel s: log("Database Corrupt: " + y)              |
| 809 |                                                                             |
| 810 | $IooManyConnections(y) \mapsto cancel s; Iog("Ioo many connections: " + y)$ |

An exception in checkDetails might be raised by the term **raise** DatabaseCorrupt(*filename*), for example. Our approach generalises straightforwardly to handle this example.

Syntax. Figure 8 shows extensions to EGV for exceptions with payloads. We introduce a type of exceptions, Exn. We assume a countably infinite set  $X \in \mathbb{E}$  of exception names, and a type schema function  $\Sigma(X) = A$  mapping exception names to payload types. We extend **raise** to take a term of type Exn as its argument. Finally, we generalise tryLasxinMotherwiseN to tryLasxinMunlessH, where *H* is an exception handler with clauses  $\{X_i(y_i) \mapsto N_i\}_i$ , such that  $X_i$  is an exception name;  $y_i$  binds the payload; and  $N_i$  is the clause to be evaluated when the exception is raised.

Typing Rules. The TP-Exn rule ensures that an exception's payload matches its expected type. The TP-RAISE and TP-TRY are the natural extensions of T-RAISE and T-TRY.

Semantics. Our presentation is similar to operational accounts of effect handlers; the formulation here is inspired by that of Hillerström et al. [2017]. To define the semantics of the generalised exception handling construct, we first introduce the auxiliary function handled(E), which defines the exceptions handled in a given evaluation context:

| $handled(P) = \emptyset$ | handled(try <i>E</i> as <i>x</i> in <i>M</i> unless <i>H</i> ) = handled( <i>E</i> ) $\cup$ dom( <i>H</i> ) |
|--------------------------|-------------------------------------------------------------------------------------------------------------|
| handled(E) = handled(E)  | '), if <i>E</i> is not a <b>try</b> and <i>E</i> ' is the immediate subcontext of <i>E</i>                  |

The EP-RAISE rule handles an exception. The side conditions ensure that the exception is caught by 829 the nearest matching handler and is handled by the appropriate clause. As with plain EGV, all free 830 names are safely discarded. The EP-RAISECHILD and EP-RAISEMAIN rules cover the cases where an 831 exception is unhandled. Due to the use of the handled function we no longer require pure contexts. 832 833

1:17

Syntax 834 Types  $A, B ::= \cdots | Exn$ 835 Terms  $L, M, N ::= \cdots | X(M) |$  raise M | try L as x in M unless H836 **Exception Handlers**  $H ::= \{X_i(x_i) \mapsto N_i\}_i$ 837 Runtime Syntax 838 Evaluation Contexts  $E := \cdots | raise E | try E as x in M unless H$ 839 840  $\Sigma(X) = A$ Term typing  $\Gamma \vdash M : A$ 841 TP-TRY 842  $\Gamma_1 \vdash L : A$ TP-Exn TP-RAISE 843  $\Gamma \vdash M : A$  $\Gamma \vdash M : Exn$  $\Gamma_2, x: A \vdash M: B$   $(\Gamma_2, y_i: \Sigma(X_i) \vdash N_i: B)_i$  $\Sigma(X) = A$ 844  $\overline{\Gamma_1, \Gamma_2 \vdash \operatorname{try} L \operatorname{as} x \operatorname{in} M \operatorname{unless} \{X_i(y_i) \mapsto N_i\}_i : B}$  $\Gamma \vdash \mathbf{raise} M : A$  $\Gamma \vdash X(M)$ : Exn 845  $M \longrightarrow_{\mathsf{M}} N \ \boxed{C \longrightarrow \mathcal{D}}$ Term and Configuration Reduction 846 847 EP-VAL try V as x in M unless H  $\longrightarrow_{M} M\{V/x\}$ 848 **EP-RAISE** 849  $\mathcal{F}[\operatorname{try} E[\operatorname{raise} X(V)] \text{ as } x \text{ in } M \text{ unless } H]$  $\rightarrow$  $\mathcal{F}[N\{V/y\}] \parallel \notin E$  where  $X \notin \mathsf{handled}(E)$ 850  $(X(y) \mapsto N) \in H$ 851 EP-RAISECHILD  $\circ E[raise X(V)]$  $\oint E \parallel \oint V$ where  $X \notin \text{handled}(E)$ **EP-RAISEMAIN** • E[raise X(V)]halt  $\parallel \oint E \parallel \oint V$ where  $X \notin \text{handled}(E)$ 852 853 854

Fig. 8. User-defined Exceptions with Payloads

All of EGV's metatheoretic properties (preservation, global progress, confluence, and termination) adapt straightforwardly to this extension.

## 4.2 Unrestricted Types and Access Points

Unrestricted (intuitionistic) types allow some values to be used in a non-linear fashion. Access points [Gay and Vasconcelos 2010] provide a more flexible method of session initiation than **fork**, allowing two threads to dynamically establish a session. Both features are useful in practice: unrestricted types because some data is naturally multi-use, and access points because they admit cyclic communication topologies supporting racey stateful servers such as chat servers. *Access points* decouple spawning a thread from establishing a session. An access point has the unrestricted type AP(*S*); we write un(*A*) to mean that *A* is unrestricted and un( $\Gamma$ ) if un(*A<sub>i</sub>*) for all  $x_i : A_i \in \Gamma$ . **Figure 9** shows the syntax, typing rules, and reduction rules for EGV extended with access points.

Unrestricted Types. To support unrestricted types, we introduce a splitting judgement ( $\Gamma = \Gamma_1 + \Gamma_2$ ), which allows variables of unrestricted type to be shared across sub-environments, but requires linear variables to be used only in a single sub-environment. We relax rule T-VAR to allow the use of unrestricted environments, and adapt all rules containing multiple subterms to use the splitting judgement. We detail T-APP in the figure; the adaptations of other rules are similar. While unrestricted types are useful in general, we show the specific case of unrestricted access points.

Access points. The **spawn** M construct spawns M as a new thread, **new**<sub>S</sub> creates a fresh access point, and **request** M and **accept** M generate fresh endpoints that are matched up nondeterministically to form channels. With access points we can macro-express **fork**:

## fork $M \triangleq \text{let } ap = \text{new}_S \text{ in spawn } (M (\text{accept } ap)); \text{ request } ap$

Proc. ACM Program. Lang., Vol. POPL, No. 1, Article 1. Publication date: November 2019.

1:18

855 856 857

858

859 860

861

862

863

864

865

866

867

868

869 870

871

872

873

874

875

876 877

878

879

880

| Syntax                                                                  |                                                                       |                                                     |                                              |                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Types                                                                   | $A := \cdots \mid A$                                                  | P(S)                                                |                                              |                                                                                                                                                                                                                                        |
| Access Point Nam                                                        | es z                                                                  | < <i>/</i>                                          |                                              |                                                                                                                                                                                                                                        |
| Terms                                                                   | $M := \cdots \mid z$                                                  | spawn $M  $ news                                    | s   request M                                | accept M                                                                                                                                                                                                                               |
| Configurations                                                          | $C := \cdots \mid (v)$                                                | $(z)C \mid z(X, \mathcal{Y})$                       | •                                            | •                                                                                                                                                                                                                                      |
| Runtime typing er                                                       | vironments $\Delta ::= \cdots \mid \Delta$                            | , z: S                                              |                                              |                                                                                                                                                                                                                                        |
| Splitting                                                               |                                                                       |                                                     |                                              | $\Gamma = \Gamma_1 +$                                                                                                                                                                                                                  |
|                                                                         | un(A)                                                                 | $\Gamma = \Gamma_1 + \Gamma_2$                      |                                              | $\Gamma = \Gamma_1 + \Gamma_2$                                                                                                                                                                                                         |
| $\overline{} = \cdot + \cdot \qquad \overline{\Gamma, x : A = (A = A)}$ | $\Gamma_1, x: A) + (\Gamma_2, x: A)$                                  | $\overline{\Gamma, x : A = (\Gamma_1, x : A)}$      | $+\Gamma_2$ $\overline{\Gamma, x:}$          | $A = \Gamma_1 + (\Gamma_2, x:$                                                                                                                                                                                                         |
| Typing                                                                  |                                                                       |                                                     |                                              | $\Gamma \vdash M$                                                                                                                                                                                                                      |
| T-VAR                                                                   | Т-Арр                                                                 |                                                     |                                              |                                                                                                                                                                                                                                        |
| $x:A\in\Gamma$ un                                                       | $\Gamma(\Gamma) \qquad \qquad \Gamma = \Gamma_1 + \Gamma_2$           | $\Gamma_1 \vdash M : A \multimap B$                 | $\Gamma_2 \vdash N : A$                      |                                                                                                                                                                                                                                        |
| $\Gamma \vdash x : A$                                                   |                                                                       | $\Gamma \vdash M  N : B$                            |                                              |                                                                                                                                                                                                                                        |
| TA-Spawn                                                                |                                                                       | TA-Reouest                                          | TA-                                          | Accept                                                                                                                                                                                                                                 |
| $\Gamma \vdash M : 1$                                                   | TA-New                                                                | $\Gamma \vdash \widetilde{M} : AP(S)$               | S) Γ                                         | $\vdash M : AP(S)$                                                                                                                                                                                                                     |
| $\Gamma \vdash \mathbf{spawn} \ M : 1$                                  | $\Gamma \vdash \mathbf{new}_S : AP(S)$                                | $\Gamma \vdash \mathbf{request} \ M$                | $I:\overline{S}$ $\Gamma \vdash$             | accept M : S                                                                                                                                                                                                                           |
| Reduction                                                               |                                                                       |                                                     |                                              | $C \longrightarrow$                                                                                                                                                                                                                    |
| E-Spawn                                                                 | $\mathcal{F}[spawn M]$                                                | $\longrightarrow \mathcal{F}[()] \parallel \circ M$ |                                              |                                                                                                                                                                                                                                        |
| E-New                                                                   | $\mathcal{F}[new_S]$                                                  | $\rightarrow (vz)(\mathcal{F}[z] \parallel z)$      | $z(\epsilon,\epsilon))$                      | z is fresh                                                                                                                                                                                                                             |
| E-Accept                                                                | $\mathcal{F}[\text{accept } z] \parallel z(\mathcal{X}, \mathcal{Y})$ | $\rightarrow$ $(va)(\mathcal{F}[a] \parallel$       | $z(\{a\} \cup \mathcal{X}, \mathcal{Y}))$    | a is fresh                                                                                                                                                                                                                             |
| E-Request                                                               | $\mathcal{F}$ [request $z$ ]    $z(X, \mathcal{Y})$                   | $\rightarrow$ $(va)(\mathcal{F}[a] \parallel$       | $z(X, \{a\} \cup \mathcal{Y}))$              | a is fresh                                                                                                                                                                                                                             |
| Е-Матсн                                                                 | $z(\{a\}\cup X, \{b\}\cup \mathcal{Y})$                               | $\longrightarrow z(X, \mathcal{Y}) \parallel a($    | $(\epsilon) \longleftrightarrow b(\epsilon)$ |                                                                                                                                                                                                                                        |
| Configuration Typing                                                    |                                                                       |                                                     |                                              | $\Gamma; \Delta \vdash^{\phi}$                                                                                                                                                                                                         |
|                                                                         |                                                                       |                                                     | TA-Connect                                   | rN                                                                                                                                                                                                                                     |
|                                                                         |                                                                       |                                                     | $\Gamma$ :                                   | $=\Gamma_1+\Gamma_2$                                                                                                                                                                                                                   |
| TA A-N.                                                                 | <b>—</b>                                                              |                                                     | $\Gamma_1, \overrightarrow{a:S};$            | $\Delta_1, \overrightarrow{b:\overline{T}} \vdash^{\phi_1} C$                                                                                                                                                                          |
| $\Gamma, z : AP(S); \Delta, z : S \vdash^{\phi} C$                      | ТА-Ар<br>un(                                                          | Γ)                                                  | $\Gamma_2, \overrightarrow{b:T};$            | $\Delta_2, \overrightarrow{a:\overline{S}} \vdash^{\phi_2} \mathcal{D}$                                                                                                                                                                |
| $\overline{ \Gamma; \Delta \vdash^{\phi} (\nu z) C }$                   | $\overline{\Gamma, z: AP(S); \mathcal{X}: \overline{S}, \mathcal{Y}}$ | $:S,z:S\vdash^{\circ} z(X,\mathcal{Y})$             | $\Gamma: \Lambda_1 \Lambda_2 $               | $\rightarrow \rightarrow $ |
|                                                                         |                                                                       |                                                     | $1, \Delta_1, \Delta_2, u$ :                 | 5,0.1° FU                                                                                                                                                                                                                              |
|                                                                         |                                                                       |                                                     |                                              |                                                                                                                                                                                                                                        |
|                                                                         | Fig. 9. A                                                             | Access Points                                       |                                              |                                                                                                                                                                                                                                        |

*Reduction rules.* We let *z* range over access point names. Configuration (vz)C denotes binding access point name *z* in *C*, and  $z(X, \mathcal{Y})$  is an access point with name *z* and two sets *X* and  $\mathcal{Y}$  containing endpoints to be matched.

Rule E-SPAWN creates a new child thread but, unlike **fork**, returns the unit value instead of creating a channel and returning an endpoint. Rule E-NEW creates a new access point with fresh name *z*. Rules E-ACCEPT and E-REQUEST create a fresh name *a*, returning the newly-created name to the thread, and adding the name to sets X and  $\mathcal{Y}$  respectively. Rule E-MATCH matches two endpoints *a* and *b* contained in X and  $\mathcal{Y}$ , and creates an empty buffer  $a(\epsilon) \leftrightarrow b(\epsilon)$ .

*Configuration typing.* Configuration typing judgements again have the shape  $\Gamma; \Delta \vdash^{\phi} C$ . Whereas  $\Gamma$  may contain unrestricted variables,  $\Delta$  remains entirely linear.

Read bottom-up, rule TA-APNAME adds an unrestricted reference z : AP(S) to  $\Gamma$ , and a linear entry 932 z : S to  $\Delta$ . Rule TA-AP types an access point configuration. We write X : S for  $a_1 : S, \ldots, a_n : S$ , 933 where  $X = \{a_1, \ldots, a_n\}$ . For an access point  $z(X, \mathcal{Y})$  to be well-typed,  $\Delta$  must contain z : S, along 934 with the names in X having type  $\overline{S}$  and the names in  $\overline{Y}$  having type S. Rule T-CONNECTN generalises 935 T-CONNECT<sub>1</sub> and T-CONNECT<sub>2</sub> to allow any number of channels to communicate across a buffer; 936 this therefore introduces the possibility of deadlock. 937

Interaction with cancellation. We need no additional reduction rules to account for interaction between access points and channel cancellation. Should an endpoint waiting to be matched be cancelled, it is paired as usual, and interaction with its associated buffer raises an exception:

Metatheory. By decoupling process and channel creation we lose the guarantee that the communication topology is acyclic, and therefore introduce the possibility of deadlock. Preservation continues to hold-in fact, we gain a stronger preservation result since the use of TA-CONNECTN allows typeability to be preserved by equivalences.

THEOREM 4.1 (PRESERVATION MODULO EQUIVALENCE (ACCESS POINTS)). If  $\Psi; \Delta \vdash^{\phi} C$  and  $C \Longrightarrow \mathcal{D}$ , then there exist  $\Psi', \Delta'$  such that  $\Psi; \Delta \longrightarrow \Psi'; \Delta'$  and  $\Psi'; \Delta' \vdash^{\phi} \mathcal{D}$ .

**PROOF.** By induction on the derivation of  $C \longrightarrow D$  and preservation by  $\equiv$ ; see Appendix D. 

Alas, the introduction of cyclic topologies and therefore the loss of deadlock-freedom necessarily violates global progress. Nevertheless, a weaker form of progress still holds: if a configuration does not reduce, then it is due to deadlock rather than cancellation.

THEOREM 4.2 (PROGRESS (ACCESS POINTS)). Suppose  $:: \vdash^{\phi} C$  and  $C \Longrightarrow$ . Then each thread in C is either a value; a buffer; a zapper thread; an access point; requesting or accepting on an access point; or ready to perform a communication action.

If C contains a thread  $\phi M$  and ready(a, M) for some name a, then C contains some buffer  $a(\epsilon) \longleftrightarrow b(\overrightarrow{W})$ , and C does not contain a zapper thread  $\frac{1}{2}b$ .

PROOF. We can prove a similar property for open configurations by induction on the derivation of  $\Psi$ ;  $\Delta \vdash^{\phi} C$ ; the above result arises as a corollary and by inspection of the reduction rules. 

In the presence of access points confluence and termination no longer hold: access points are nondeterministic and can encode higher-order state and hence fixpoints via Landin's knot.

#### 4.3 **Recursive Session Types**

Recursive session types support repeating protocols. The extension of EGV with recursive session types is standard [Lindley and Morris 2016, 2017] and orthogonal to the main ideas of this paper, so we do not spell out the details here. The implementation (\$5) does provide recursive session types.

#### SESSION TYPES WITHOUT TIERS 5

In this section we describe our extensions to Links to support exception handling, as well as 974 extensions to the Links concurrency runtimes to support distribution. Links [Cooper et al. 2007] is a statically-typed, ML-inspired, impure functional programming language designed for the web. Links is designed to allow code for all "tiers" of a web application-client, server, and database-to be written in a single language. Lindley and Morris [2017] extend Links with first-class session types, relying on lightweight linear typing [Mazurak et al. 2010] and row polymorphism [Rémy

938

939

940

945

946

947

948

949

950 951

952 953

954

955

956

957

958

959

960

961 962

963

964

965

966 967

968

969

970

971 972

1994]. We extend their work to account for distributed web applications, which amongst other
 things necessitates handling failure.

## 984 5.1 The Links Model

983

995

996

997

998 999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013 1014

1015

1016

1017

985 Links provides a uniform language for web applications. Client code is compiled to JavaScript, server 986 code is interpreted, and database queries are compiled to SQL. Each client and server has its own 987 concurrency runtime, providing lightweight processes and message passing communication. Earlier 988 versions of Links [Cooper et al. 2007] invoked a fresh copy of the server per server request and 989 communication between client and server was via RPC calls. Advances such as WebSockets allow 990 socket-like bidirectional asynchronous communication between client and server, in turn allowing 991 richer applications where data (for example, comments on a GitHub pull request) flows more freely 992 between client and server. Moving to a model based on lightweight threads and session-typed 993 channels avoids the inversion of control inherent in RPC-style systems, and allows development to 994 be driven by the communication protocol.

Links now adopts a persistent application server model, incorporating client-server communication using session-typed channels. Since channels are a location-transparent abstraction, we also optionally allow the abstraction of client-to-client communication, routed through the server.

## 5.2 Concurrency

Links provides typed actor-style concurrency where processes have a single incoming message queue and can send asynchronous messages. Lindley and Morris [2017] extend Links with session-typed channels, using Links' process-based model but replacing actor mailboxes with session-typed channels. We extend their implementation to support distribution and failure handling.

The client relies on continuation-passing style (CPS), trampolining, and co-operative threading. Client code is compiled to CPS, and explicit yield instructions are inserted at every function application. When a process has yielded a given number of times, the continuation is pushed to the back of a queue, and the next process is pulled from the front of the queue. While modern browsers are beginning to integrate tail-recursion, and we have updated the Links library to support it, adoption is not yet widespread. Thus, we periodically discard the call stack using a trampoline. Cooper [2009] discusses the Links client concurrency model in depth. The server implements concurrency on top of the OCaml lwt library [Vouillon 2008], which provides lightweight cooperative threading. At runtime, a channel is represented as a pair of endpoint identifiers:

(Peer endpoint, Local endpoint)

Endpoint identifiers are unique. If a channel (a, b) exists at a given location, then that location should contain a buffer for b.

#### <sup>1018</sup> 1019 5.3 Distributed Communication

To support bidirectional communication between client and server we use WebSockets [Fette and Melnikov 2011]. A WebSocket connection is established by a client. When a request is made and a web page is generated, each client is assigned a unique identifier, which it uses to establish a WebSocket connection. Any messages the server attempts to send prior to a WebSocket connection being established are buffered and delivered after the connection is established. We use a JSON protocol to communicate messages such as access point operations, remote session messages, and endpoint cancellation notifications.

1027 It is possible that one client will hold one endpoint of a channel, and another client will hold the 1028 other endpoint. In order to provide the illusion of client-to-client communication, we route the <sup>1030</sup> communication between the two clients via the server. The server maintains a map

1032 1033 1034

> 1037 1038 1039

> 1040

1041

1042

1043

1044 1045

1046 1047

1048 1049 1050

1061

1062

1063 1064

1031

 $\texttt{Endpoint ID} \mapsto \texttt{Location}$ 

where Location is either Server or Client(ID), where ID identifies a particular client. The map is updated if a new connection is established; an endpoint is sent as part of a message; or a client disconnects. The server also maintains a map

Client ID 
$$\mapsto$$
 [Channel]

associating each client with the publicly-facing channels residing on that client, where Channel is a pair of endpoints (a, b) such that b is the endpoint residing on the client. Much like TCP connections, WebSocket connections raise an event when a connection is disconnected. Upon receiving such an event, all channels associated with the client are cancelled, and exceptions are invoked as per the exception handling mechanism described in §2 and §5.4.

*Distributed Delegation.* It is possible to send endpoints as part of a message. Session delegation in the presence of distributed communication requires some care to ensure that messages are delivered to the correct participant; our implementation adapts the algorithms of Hu et al. [2008]. Further details can be found in Appendix E.

## 5.4 Session Typing with Failure Handling

1051 Effect Handlers. Effect handlers [Plotkin and Pretnar 2013] provide a modular approach to 1052 programming with user-defined effects. Exception handlers are a special case of effect handlers. 1053 Consequently, we leverage the existing implementation of effect handlers in Links [Hillerström 1054 and Lindley 2016; Hillerström et al. 2017]. In §4 we generalise try - as - in - otherwise- to 1055 accommodate user defined exceptions. Effect handlers generalise further to support what amounts 1056 to resumable exceptions in which the handler has access not only to a payload, but also the delimited 1057 continuation (i.e. evaluation context) from the point at which the exception was raised up to 1058 the handler, allowing effect handlers to implement arbitrary side-effects; not just exceptions. We 1059 translate exception handling as follows. 1060

```
\llbracket \mathbf{raise} \rrbracket = \mathbf{do} \text{ raise} \qquad \llbracket \mathbf{try} \ L \text{ as } x \text{ in } M \text{ otherwise } N \rrbracket = \mathbf{handle} \llbracket L \rrbracket \text{ with} \\ \mathbf{return} \ x \mapsto \llbracket M \rrbracket \\ \mathbf{raise} \ r \qquad \mapsto \mathbf{cancel} \ r; \llbracket N \rrbracket
```

The introduction form **do** op invokes an operation op (which may represent raising an exception or 1065 some other effect). The elimination form handle M with H runs effect handler H on the computa-1066 tion *M*. In general an effect handler *H* consists of a *return clause* of the form **return**  $x \mapsto N$ , which 1067 behaves just like the success continuation (x in N) of an exception handler, and a collection of 1068 operation clauses, each of the form op  $\vec{p} r \mapsto N$ , specifying how to handle an operation analogously 1069 to how exception handler clauses specify how to handle an exception, except that as well as binding 1070 payload parameters  $\vec{p}$ , an operation clause also binds a *resumption* parameter r. The resumption r 1071 binds a closure representing the continuation up to the nearest enclosing effect handler, allowing 1072 control to pass back to the program after handling the effect. In the case of our translation, the 1073 raise operation has no payload, and rather than invoking the resumption r we cancel it, assuming 1074 the natural extension of cancellation to arbitrary linear values, whereby all free names in the value 1075 are cancelled (r being bound to the current evaluation context reified as a value). A formalisation 1076 of linear effect handlers for session typing is outside the scope of this paper and left as future work. 1077

Raising exceptions. An exception may be raised either explicitly through an invocation of raise 1079 (desugared to **do** raise), or through a blocked **receive** call where the peer endpoint has been 1080 cancelled. Thus, we know statically where any exceptions may be raised. To support cancella-1081 tion of closures on the client, we adorn closures with an explicit environment field that can be 1082 directly inspected. Currently, Links does not closure-convert continuations on the client, so we 1083 use a workaround to simulate cancelling a resumption (as required by the translation [-])). When 1084 compiling client code, for each occurrence of **do** raise, we compile a function that inspects all 1085 1086 affected variables and cancels any affected endpoints in the continuation. For each occurrence of receive, we compile a continuation to cancel affected endpoints to be invoked by the runtime 1087 system if the receive operation fails. 1088

## 5.5 Distributed Exceptions

1089 1090

1106

1111

1115

1119

1121

Our implementation fully supports the semantics described in §2. The concurrency runtime at each
 location maintains a set of cancelled endpoints.

Cancellation. Suppose endpoint a is connected to peer endpoint b. If a is cancelled, then all endpoints in the queue for a are also cancelled according to the E-ZAP rule. If a and b are at the same location, then a is added to the set of cancelled endpoints. If they are at different locations, then a cancellation notification for a is routed to b's location. Zapper threads are modelled in the implementation by recording sets of cancelled endpoints and propagating cancellation messages.

Failed communications. Again, suppose endpoint a is connected to peer endpoint b. Should a process attempt to read from a when the buffer for a is empty, then the runtime will check to see whether b is in the set of cancelled endpoints. If so, then a is cancelled and an exception is raised in the blocked process; if not, the process is suspended until a message is ready. Should the runtime later add b to the set of cancelled endpoints, then again a is cancelled and an exception raised. These actions implement the E-RECEIVEZAP rule.

*Disconnection.* To handle disconnection, the server maintains a map from client IDs to the list of endpoints at the associated client. WebSockets—much like TCP sockets—raise a *closed* event on disconnection. Consequently, when a connection is closed, the runtime looks up the endpoints owned by the terminated client and notifies all other clients containing the peer endpoints.

1112 6 EXAMPLE: A CHAT APPLICATION

<sup>1113</sup> In this section we outline the design and implementation of a web-based chat application in Links <sup>1114</sup> making use of distributed session-typed channels. We write the following informal specification:

- To initialise, a client must:
- connect to the chat server; then
- 1118 send a nickname; then
  - receive the current topic and list of nicknames.
- After initialisation the client is connected and can:
  - send a chat message to the room; or
- change the room's topic; or
- 1123 receive messages from other users; or
- 1124 receive changes of topic from other users.
- Clients cannot connect with a nickname that is already in use in the room.
- All participants should be notified whenever a participant joins or leaves the room.
- 1127

```
1128
                                                                          🗋 Links chat
                                                                                               ×
       typename ChatClient = !Nickname.
1129
                                                                        ← → C ③ localhost:8080
                                                                                                                  :
         [&| Join:
                                                                                                          Q 🕁
1130
                ?(Topic, [Nickname], ClientReceive).ClientSend,
1131
                                                                         Links Session-Typed Chat
              Nope:End [&];
1132
1133
       typename ClientReceive =
1134
         [&| Join
                        : ?Nickname
                                                 .ClientReceive,
                                                                        Topic: System Check
1135
              Chat
                        : ?(Nickname, Message).ClientReceive,
                                                                        Joined as Mike
1136
             NewTopic : ?Topic
                                                 .ClientReceive,
                                                                        Joe just joined
1137
              Leave
                        : ?Nickname
                                                 .ClientReceive
                                                                        Joe: Hello, Mike!
         [&];
1138
                                                                        Mike: Hello, Joe! System working?
1139
                                                                        Joe: Seems to be
       typename ClientSend =
1140
                                                                        Mike: Okay, fine.
         [+| Chat : ?Message.ClientSend,
1141
              Topic : ?Topic .ClientSend |+];
                                                                        Joe: Okay.
1142
                                                                        Joe just left
1143
       typename ChatServer = ~ChatClient:
1144
       typename WorkerSend = ~ClientReceive;
1145
       typename WorkerReceive = ~ClientSend;
1146
1147
```

Fig. 10. Chat Application Session Types

Session Types. We can encode much of the specification more precisely as a session type, as shown in Figure 10. The client begins by sending a nickname, and then offers the server a choice of a Join message or a Nope message. In the former case, the client then receives a triple containing the current topic, a list of existing nicknames, and an endpoint (of type ClientReceive) for receiving further updates from the server; and may then continue to send messages to the server as a connected client endpoint (of type ClientSend). (Observe the essential use of session delegation.) In the latter case, communication is terminated. The intention is that the server will respond with Nope if a client with the supplied nickname is already in the chat room (the details of this check are part of the implementation, not part of the communication protocol).

The ClientReceive endpoint allows the client to offer a choice of four different messages: Join, Chat, NewTopic, or Leave. In each case the client then receives a payload (depending on the choice, a nickname, pair of nickname and chat message, or topic change) before offering another choice. The ClientSend endpoint allows the client to select between two different messages: Chat and NewTopic. In each case the client subsequently sends a payload (a chat message or a new topic) before selecting another choice. The chat server communicates with the client along endpoints with dual types.

How can session types help? The connect function (Fig. 11a) is run when a client enters a nickname. First, the client requests a fresh channel of type ChatClient from access point wap of type
AP(ChatServer). Next, the client obtains the content of the DOM input box for the nickname by
calling getInputContents(nameBoxId), where nameBoxId is the DOM ID for the nickname entry box.
Next, the client sends the nickname to the server and waits for a response; in the case of a Join
message, the client receives the room data and an incoming message channel, and calls the beginChat
function. In the case of a Nope message, an error is printed and the session ends.

Now, suppose the developer forgets to write code to check the server response (Fig. 11b). This
implementation is incorrect since there is a *communication mismatch*: the server is expecting to

1148

1149 1150 1151

1152

1153

1154

1155

1156

1157

1158

```
1177
      fun connect() {
1178
        var s = request(wap);
1179
        var nick = getInputContents(nameBoxId);
                                                                     fun connect() {
        var s = send(nick, s);
1180
                                                                       var s = request(wap);
        offer(s) {
1181
                                                                       var nick = getInputContents(nameBoxId);
           case Join(s) ->
1182
                                                                       var s = send(nick, s);
             var ((topic, nicks, incoming), s) =
1183
                                                                       var ((topic, nicks, incoming), s) =
               receive(s):
1184
                                                                         receive(s);
             beginChat(topic, nicks, incoming, s)
                                                                       beginChat(topic, nicks, incoming, s)
1185
           case Nope(s) ->
                                                                     }
1186
             print("Nickname '" ^^ nick ^^ "' already taken")
1187
        }
                                                                            (b) Incorrect connect function
1188
      }
1189
                     (a) Correct connect function
1190
```

Fig. 11. Implementations of connect function

accept or reject the request to join the room, whereas the client is expecting to receive data about
the room. However, since s has type ChatClient but does not follow the protocol, Links catches the
communication mismatch statically. Similarly, Links will statically detect an unused endpoint (e.g.
the developer forgets to finish a protocol) or an endpoint being used more than once, as in §1.2.

Architecture. Figure 12a depicts the architecture of the chat application. Each client has a process which sends messages over a distributed session channel of type ClientSend to its own worker process on the server, which in turn sends internal messages to a supervisor process containing the state of the chat room. These messages trigger the supervisor process to broadcast a message to all chat clients over a channel of type ~ClientReceive. As is evident from the figure, the communication topology is cyclic; in order to construct this topology the code makes essential use of access points.

Disconnection. Figure 12b shows the implementation of a worker process which receives messages 1206 from a client. The worker takes the nickname of the client, as well as a channel endpoint of type 1207 WorkerReceive (which is the dual of ClientSend). The server offers the client a choice of sending a 1208 message (Chat), or changing topic (NewTopic); in each case, the associated data is received and a 1209 message dispatched to the supervisor process by calling chat or newTopic. When a client closes its 1210 connection to the server, all associated endpoints are cancelled. Consequently, an exception will 1211 be raised when evaluating the offer or receive expressions. To handle disconnection, we wrap the 1212 function in an exception handler, which recursively calls worker if the interaction is successful, and 1213 notifies the supervisor that the user has left via a call to Leave if an exception is raised. 1214

Additional examples. We have concentrated on the chat server example for exposition, but have also implemented an extended chat server and a multiplayer game. These can be found at http://www.github.com/SimonJF/distributed-links-examples.

# <sup>1219</sup> 7 **RELATED WORK**

1191 1192

1193 1194

1215

1216

1217

1218

# 1221 7.1 Session Types with Failure Handling

Carbone et al. [2008] provide the first formal basis for exceptions in a session-typed process calculus.
 Our approach provides significant simplifications: zapper threads provide a simpler semantics and
 remove the need for their queue levels, meta-reduction relation, and liveness protocol.

Proc. ACM Program. Lang., Vol. POPL, No. 1, Article 1. Publication date: November 2019.



Fig. 12. Chat Application Architecture and Worker Implementation

Our work draws on that of Mostrous and Vasconcelos [2014], who introduce the idea of cancellation. Our work differs from theirs in several key ways. Their system is a process calculus; ours is a  $\lambda$ -calculus. Their channels are synchronous; ours are asynchronous. Their exception handling construct scopes over a single action; ours scopes over an arbitrary computation.

Caires and Pérez [2017] describe a core, logically-inspired process calculus supporting nondeterminism and abortable behaviours encoded via a nondeterminism modality. Processes may either provide or not provide a prescribed behaviour; if a process attempts to consume a behaviour that is not provided, then its linear continuation is safely discarded by propagating the failure of sessions contained within the continuation. Their approach is similar in spirit to our zapper threads. Additionally, they give a core  $\lambda$ -calculus with abortable behaviours and exception handling, and define a type-preserving translation into their core process calculus.

Our approach differs in several important ways. First, our semantics is asynchronous, handling the intricacies involved with cancelling values contained in message queues. Second, we give a direct semantics to EGV, whereas Caires and Pérez rely on a translation into their underlying process calculus. Third, to handle the possibility of disconnection, our calculus allows any channel to be discarded, whereas they opt for an approach more closely resembling checked exceptions, aided by a monadic presentation.

The above works are all theoretical. Backed by our theoretical development, our implementation integrates session types and exceptions, extending Links.

Multiparty Session Types. Fowler [2016] describes an Erlang implementation of the Multiparty 1265 1266 Session Actor framework proposed by Neykova and Yoshida [2014, 2017b] with a limited form of failure recovery; Neykova and Yoshida [2017a] present a more comprehensive approach, based 1267 on refining existing Erlang supervision strategies. Chen et al. [2016] introduce a formalism based 1268 on multiparty session types [Honda et al. 2016] that handles partial failures by transforming 1269 programs to detect possible failures at a set of statically determined synchronisation points. These 1270 1271 approaches rely on a fixed communication topology, using mechanisms such as dependency graphs or synchronisation points to determine which participants are affected when one participant fails. 1272 Delegation implies location transparency, thus we must consider dynamic topologies. 1273 1274

1243 1244 1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

## 1275 7.2 Session Types and Distribution

Hu et al. [2008] introduce Session Java (SJ), which allows distributed session-based communication
in the Java programming language, making use of the Polyglot framework [Nystrom et al. 2003]
to statically check session types. Hu et al. are the first to present the challenges of distributed
delegation along with distributed algorithms which address those challenges. We adapt their
algorithms to web applications. SJ restricts communication to a fixed set of simple types; Links
allows arbitrary values to be sent. SJ provides statically scoped exception handling, propagating
exceptions to ensure liveness (but this feature is not formalised).

Scalas and Yoshida [2016] introduce lchannels, a lightweight implementation of session types in Scala. To maximise applicability of their approach and not require any modifications to Scala, their approach detects duplicate endpoint use at runtime. By virtue of the translation into the linear  $\pi$ -calculus introduced by Kobayashi [2003] and later expanded on by Dardha et al. [2017], lchannels is particularly amenable to distribution. Scalas et al. [2017] build upon this approach to translate a multiparty session calculus into the linear  $\pi$ -calculus, providing the first distributed implementation of multiparty session types to support delegation.

## <sup>1291</sup> 7.3 Session Types via Affine Types

Rust [Matsakis and Klock II 2014] provides *ownership types* [Clarke 2003], ensuring that an object has
at most one owner. Jespersen et al. [2015] use Rust's ownership types to encode affine session types,
but since affine endpoints can be discarded implicitly, their library does not guarantee progress.
Although it is not possible to distinguish between dynamic failure and a developer forgetting to
finish an implementation, our semantics can be implemented using Rust's destructor mechanism,
enabling a progress property [Kokke 2018].

## 8 CONCLUSION AND FUTURE WORK

Session types allow protocol conformance to be checked statically. The prevailing consensus has hitherto been to require that endpoints be used linearly to enforce session fidelity and prevent premature discarding of open channels. We have argued that in order to write realistic applications in the presence of distribution and failure, linearity should be supplemented with an *explicit* cancellation operation. We show that, even in the presence of channel cancellation, our core calculus is well-behaved, being deadlock-free, type sound, confluent, and terminating.

In tandem with the formal development, we have developed an extension of the Links programming language to support distributed session-based communication for web applications, thus providing the first implementation of asynchronous session types with failure handling in a functional programming language. Our implementation leverages recent work on effect handlers.

Future work. Our implementation combines linearity and effect handlers. Linear effect handlers are new, and a ripe area of study in their own right; we plan to formalise session-typed concurrency and failure handling directly in terms of linear effect handlers. Multiparty session types [Honda et al. 2016] are yet to be included as a first-class construct of a core functional language. A natural starting point is to identify a  $\lambda$ -calculus into which we can translate the MCP calculus of Carbone et al. [2016] and then investigate how our approach adapts to the multiparty setting.

# ACKNOWLEDGMENTS

Thanks to James McKinna and the anonymous reviewers for detailed comments and suggestions.
 This work was supported by EPSRC grants EP/L01503X/1 (EPSRC CDT in Pervasive Parallelism)
 and EP/K034413/1 (From Data Types to Session Types—A Basis for Concurrency and Distribution),
 and an LFCS internship.

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

#### 1324 REFERENCES

- 1325 H. P. Barendregt. 1984. The Lambda Calculus Its Syntax and Semantics (revised ed.). Vol. 103. North Holland.
- 1326 Nick Benton and Andrew Kennedy. 2001. Exceptional Syntax. Journal of Functional Programming 11, 4 (2001), 395-410.
- 1327 Luís Caires and Jorge A Pérez. 2017. Linearity, control effects, and behavioral types. In ESOP. Springer, 229–259.
- Luís Caires and Frank Pfenning. 2010. Session types as intuitionistic linear propositions. In CONCUR, Vol. 10. Springer, 222–236.
   1329
- Marco Carbone, Ornela Dardha, and Fabrizio Montesi. 2014. Progress as compositional lock-freedom. In *COORDINATION*.
   Springer, 49–64.
- Marco Carbone, Kohei Honda, and Nobuko Yoshida. 2008. Structured interactional exceptions in session types. In CONCUR.
   Springer, 402–417.
- Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann, and Philip Wadler. 2016. Coherence generalises duality:
   A logical explanation of multiparty session types. In *CONCUR (LIPIcs)*, Vol. 59. Schloss Dagstuhl Leibniz-Zentrum fuer Informatik, 33:1–33:15.
- Tzu-Chun Chen, Malte Viering, Andi Bejleri, Lukasz Ziarek, and Patrick Eugster. 2016. A type theory for robust failure
   handling in distributed systems. In *FORTE (Lecture Notes in Computer Science)*, Vol. 9688. Springer, 96–113.
- 1337 David Gerard Clarke. 2003. Object Ownership and Containment. Ph.D. Dissertation. New South Wales, Australia. AAI0806678.
- Ezra Cooper. 2009. Programming Language Features for Web Application Development. Ph.D. Dissertation. University of Edinburgh.
- Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2007. Links: Web programming without tiers. In *FMCO*.
   Springer, 266–296.
- 1341 Ornela Dardha, Elena Giachino, and Davide Sangiorgi. 2017. Session types revisited. Inf. Comput. 256 (2017), 253-286.
- 1342
   Ian Fette and Alexey Melnikov. 2011. The WebSocket Protocol. RFC 6455. RFC Editor. 70 pages. http://www.rfc-editor.org/

   1343
   rfc/rfc6455.txt
- Simon Fowler. 2016. An Erlang implementation of multiparty session actors. In ICE (EPTCS), Vol. 223. 36-50.
- Simon J Gay and Vasco T Vasconcelos. 2010. Linear type theory for asynchronous session types. *Journal of Functional Programming* 20, 1 (2010), 19–50.
- 1346 Daniel Hillerström and Sam Lindley. 2016. Liberating effects with rows and handlers. In TyDe@ICFP. ACM, 15–27.
- Daniel Hillerström, Sam Lindley, Robert Atkey, and K. C. Sivaramakrishnan. 2017. Continuation passing style for effect
   handlers. In *FSCD (LIPIcs)*, Vol. 84. Schloss Dagstuhl Leibniz-Zentrum fuer Informatik, 18:1–18:19.
- Kohei Honda. 1993. Types for dyadic interaction. In *CONCUR*. Springer, 509–523.
- Kohei Honda, Vasco T Vasconcelos, and Makoto Kubo. 1998. Language primitives and type discipline for structured
   communication-based programming. In *ESOP*. Springer, 122–138.
- Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty asynchronous session types. *Journal of the ACM* (*JACM*) 63, 1 (2016), 9.
- Raymond Hu, Nobuko Yoshida, and Kohei Honda. 2008. Session-based distributed programming in java. In *ECOOP*. Springer, 516–541.
- Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis Larsen. 2015. Session types for Rust. In WGP. ACM,
   13–22.
- 1356 Naoki Kobayashi. 2003. Type Systems for Concurrent Programs. Springer Berlin Heidelberg, Berlin, Heidelberg, 439-453.
- 1357 Wen Kokke. 2018. rusty-variation: a library for deadlock-free session-typed communication in Rust.
   1358 https://github.com/wenkokke/rusty-variation. (2018).
- Sam Lindley and J. Garrett Morris. 2015. A semantics for propositions as sessions. In *ESOP (Lecture Notes in Computer Science)*, Vol. 9032. Springer, 560–584.
- 1360 Sam Lindley and J Garrett Morris. 2016. Talking bananas: structural recursion for session types. In ICFP. ACM, 434-447.
- Sam Lindley and J Garrett Morris. 2017. Lightweight functional session types. In *Behavioural Types: from Theory to Tools*.
   River Publishers, 265–286.
- 1363 Nicholas D. Matsakis and Felix S. Klock II. 2014. The Rust language. In *HILT*. ACM, 103–104.
- Karl Mazurak, Jianzhou Zhao, and Steve Zdancewic. 2010. Lightweight linear types in System F°. In *TLDI*. ACM, 77–88.
- Robin Milner. 1999. *Communicating and mobile systems: the pi calculus*. Cambridge university press.
- <sup>1365</sup> Dimitris Mostrous and Vasco Thudichum Vasconcelos. 2014. Affine Sessions. In *COORDINATION*. Springer, 115–130.
- Rumyana Neykova and Nobuko Yoshida. 2014. Multiparty session actors. In COORDINATION (Lecture Notes in Computer Science), Vol. 8459. Springer, 131–146.
- Rumyana Neykova and Nobuko Yoshida. 2017a. Let it recover: multiparty protocol-induced recovery. In CC. ACM, 98–108.
- Rumyana Neykova and Nobuko Yoshida. 2017b. Multiparty session actors. *Logical Methods in Computer Science* 13, 1 (2017).
- Nathaniel Nystrom, Michael Clarkson, and Andrew Myers. 2003. Polyglot: An extensible compiler framework for java. In
   *CC*. Springer, 138–152.
- 1371 Luca Padovani. 2017. A simple library implementation of binary sessions. *Journal of Functional Programming* 27 (2017), e4.
- 1372

- Jorge A Pérez, Luís Caires, Frank Pfenning, and Bernardo Toninho. 2012. Linear logical relations for session-based
   concurrency. In *European Symposium on Programming*. Springer, 539–558.
- 1375 Gordon D. Plotkin and Matija Pretnar. 2013. Handling algebraic effects. Logical Methods in Computer Science 9, 4 (2013).
- 1376 Didier Rémy. 1994. Type inference for records in a natural extension of ML. In *Theoretical Aspects Of Object-Oriented Programming*, Carl A. Gunter and John C. Mitchell (Eds.). MIT Press, Cambridge, MA, 67–95.
- Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. 2017. A linear decomposition of multiparty sessions
   for safe distributed programming. In *ECOOP (LIPIcs)*, Vol. 74. Schloss Dagstuhl Leibniz-Zentrum fuer Informatik,
   24:1-24:31.
- Alceste Scalas and Nobuko Yoshida. 2016. Lightweight session programming in scala. In *ECOOP (LIPIcs)*, Vol. 56. Schloss
   Dagstuhl Leibniz-Zentrum fuer Informatik, 21:1–21:28.

Proc. ACM Program. Lang., Vol. POPL, No. 1, Article 1. Publication date: November 2019.

- Jérôme Vouillon. 2008. Lwt: a cooperative thread library. In *ML*. ACM, 3–12.
- Philip Wadler. 2014. Propositions as sessions. *Journal of Functional Programming* 24, 2-3 (2014), 384–418.

| 3. I Uwier et al | S. | Fow | ler | et | al |
|------------------|----|-----|-----|----|----|
|------------------|----|-----|-----|----|----|

| 1422 | APPEN | IDIX CONTENTS                                                    |    |
|------|-------|------------------------------------------------------------------|----|
| 1423 |       |                                                                  |    |
| 1424 | А     | Example Runtime Typing Derivation                                | 31 |
| 1425 | В     | Deadlock-freedom                                                 | 32 |
| 1426 | С     | Supplement to Section 3 (Metatheory of EGV)                      | 33 |
| 1427 | C.1   | Preservation                                                     | 33 |
| 1428 | C.2   | Canonical Forms                                                  | 46 |
| 1429 | C.3   | Progress                                                         | 46 |
| 1430 | C.4   | Confluence                                                       | 50 |
| 1431 | D     | Supplement to Section 4.1 (Metatheory of EGV with Access Points) | 51 |
| 1432 | E     | Distributed Delegation                                           | 54 |
| 1433 | E.1   | Challenges of Distributed Delegation                             | 54 |
| 1434 | E.2   | Approaches to Distributed Delegation                             | 55 |
| 1435 | E.3   | Delegation in Distributed Session Links                          | 55 |
| 1436 | E.4   | Correctness                                                      | 56 |
| 1437 |       |                                                                  |    |
| 1438 |       |                                                                  |    |
| 1439 |       |                                                                  |    |
| 1440 |       |                                                                  |    |
| 1441 |       |                                                                  |    |
| 1442 |       |                                                                  |    |
| 1443 |       |                                                                  |    |
| 1444 |       |                                                                  |    |
| 1445 |       |                                                                  |    |
| 1446 |       |                                                                  |    |
| 1447 |       |                                                                  |    |
| 1448 |       |                                                                  |    |
| 1449 |       |                                                                  |    |
| 1450 |       |                                                                  |    |
| 1451 |       |                                                                  |    |
| 1453 |       |                                                                  |    |
| 1454 |       |                                                                  |    |
| 1455 |       |                                                                  |    |
| 1456 |       |                                                                  |    |
| 1457 |       |                                                                  |    |
| 1458 |       |                                                                  |    |
| 1459 |       |                                                                  |    |
| 1460 |       |                                                                  |    |
| 1461 |       |                                                                  |    |
| 1462 |       |                                                                  |    |
| 1463 |       |                                                                  |    |
| 1464 |       |                                                                  |    |
| 1465 |       |                                                                  |    |
| 1466 |       |                                                                  |    |
| 1467 |       |                                                                  |    |
| 1468 |       |                                                                  |    |
| 1469 |       |                                                                  |    |
| 1470 |       |                                                                  |    |

# A EXAMPLE RUNTIME TYPING DERIVATION We give an example derivation to illustrate how channels are introduced by name restrictions and then split into endpoints using the T-CONNECT<sub>i</sub> rules. We assume suitable encodings of linear

booleans and integers using linear sums and products.

Let us assume we have derivations for:

 $\Gamma_1, a: !Int.End \vdash^{\circ} E[$ **send** 5 a] : 1  $\Gamma_2, b: ?Bool.?Int.End \vdash E'[$ **receive** b] :  $A \mapsto true : Bool$ We construct a derivation **D** of  $(va)(vb)(\circ E[\text{send } 5 a] \parallel (a(\epsilon) \leftrightarrow b(\text{true}) \parallel \bullet E'[\text{receive } b]))$ . First let  $\mathbf{D}_1$  be the following subderivation.  $\frac{! \text{Int.End}/\epsilon = \overline{!\text{Bool}.!\text{Int.End}/\text{Bool}} \quad \overline{\cdot \vdash \epsilon : \epsilon} \quad \cdot \vdash \text{true} : \text{Bool}}{\cdot; a : ! \text{Int.End}, b : ! \text{Bool}.!\text{Int.End} \vdash^{\circ} a(\epsilon) \longleftrightarrow b(\text{true})} \text{ T-Buffer}$ Then let  $\mathbf{D}_2$  be the following subderviation.  $T-CONNECT_{2} \xrightarrow{\Gamma_{2}, b : ?Bool.?Int.End \vdash E'[\textbf{receive } b] : A}{\Gamma_{2}, b : ?Bool.?Int.End; \vdash^{\bullet} \bullet E'[\textbf{receive } b]} T-MAIN} T-CONNECT_{2} \xrightarrow{\Gamma_{2}; a : ?Int.End, b : (?Bool.?Int.End)^{\sharp} \vdash^{\bullet} a(\epsilon) \nleftrightarrow b(true) \parallel \bullet E'[\textbf{receive } b]} T-MAIN}{\Gamma_{2}; a : ?Int.End, b : (?Bool.?Int.End)^{\sharp} \vdash^{\bullet} a(\epsilon) \nleftrightarrow b(true) \parallel \bullet E'[\textbf{receive } b]} T-MAIN}$ The complete derivation **D** is as follows.  $\frac{\text{T-THREAD}}{\Gamma_{1}, a: !!\text{nt}.\text{End} \vdash^{\circ} E[\text{send } 5 a]: 1}{\Gamma_{1}, a: !!\text{nt}.\text{End}; \vdash^{\circ} E[\text{send } 5 a]} \quad \mathbf{D}_{2}} \qquad \text{T-CONNECT}_{1}}{\Gamma_{1}, \Gamma_{2}; a: (!!\text{nt}.\text{End})^{\sharp}, b: (?\text{Bool}.?\text{Int}.\text{End})^{\sharp} \vdash^{\circ} \circ E[\text{send } 5 a] \parallel (a(\epsilon) \nleftrightarrow b(\text{true}) \parallel \bullet E'[\text{receive } b])} \qquad \text{T-Nu}} \qquad \text{T-Nu}$  $\Gamma_1, \Gamma_2; a : (!Int.End)^{\sharp} \vdash^{\bullet} (\nu b) (\circ E[\text{send 5 } a] \parallel (a(\epsilon) \nleftrightarrow b(\text{true}) \parallel \bullet E'[\text{receive } b]))$ – T-Nu  $\Gamma_1, \Gamma_2; \cdot \vdash^{\bullet} \bullet(va)(vb)(\circ E[\text{send 5 } a] \parallel (a(\epsilon) \leftrightarrow b(\text{true}) \parallel \bullet E'[\text{receive } b]))$ Let us read **D** bottom-upwards. The two instances of the T-Nu rule introduce channels *a* and *b* 

Let us read **D** bottom-upwards. The two instances of the T-NU rule introduce channels a and b into the runtime environment. The T-CONNECT<sub>1</sub> rule splits channel a into dual endpoints: on the left the endpoint a appears in the type environment and the sending thread; on the right the end point a appears in the runtime environment and the buffer. The T-CONNECT<sub>2</sub> rule splits channel b into dual endpoints: on the left the endpoint b appears in the runtime environment and the suffer. The T-CONNECT<sub>2</sub> rule splits channel b into dual endpoints: on the left the endpoint b appears in the runtime environment and the suffer, on the right the endpoint b appears in the type environment and the receiving thread.

## 1520 B DEADLOCK-FREEDOM

Here we give a graph-theoretic account of deadlock-freedom in EGV, independent of our notion of progress, following Lindley and Morris [2015].
 Description of the progress of the pr

<sup>1523</sup> Due to the asynchronous semantics of EGV, sending on an endpoint and cancelling an endpoint <sup>1524</sup> reduce immediately. Deadlocks may therefore only occur when cycles occur receiving or closing an <sup>1525</sup> endpoint. We begin by classifying the notion of a *blocked thread*: that is, a thread which is blocked <sup>1526</sup> performing an action on some channel endpoint.

*Definition B.1.* We say that term *M* is *blocked on name a* if *M* is about to receive on or close *a*. Formally:

blocked
$$(a, M) \triangleq \exists E. (M = E[\text{receive } a]) \lor (M = E[\text{close } a])$$

Given the notion of a blocked thread, we may characterise the notion of a dependency between
 communication actions.

Definition B.2. Let C be a configuration such that a and b are not bound by C. We say that a depends on b in C, written depends(a, b, C), if C is a buffer connecting a and b, or a appears in some thread blocked on b, or if a depends on some name c which depends on b. Formally:

• depends
$$(a, b, a(\overrightarrow{V}) \leftrightarrow b(\overrightarrow{W}))$$

- depends $(a, b, b(\overrightarrow{W}) \leftrightarrow a(\overrightarrow{V}))$
- depends $(a, b, \phi M) \triangleq blocked(b, M) \land a \in fn(M)$
- depends $(a, b, C) \triangleq \exists \mathcal{G}, \mathcal{D}, \mathcal{E}, c.C \equiv \mathcal{G}[\mathcal{D} \parallel \mathcal{E}] \land depends(a, c, \mathcal{D}) \land depends(c, b, \mathcal{E})$

*Remark.* The above definition of dependency is an over-approximation to the intuitive notion, as a buffer need not have dependencies in both directions, but for our purposes this does not matter.

*Definition B.3.* We say that a configuration is *deadlocked* if it contains cyclic dependencies:

 $\mathsf{deadlocked}(\mathcal{C}) \triangleq \exists \mathcal{D}, \mathcal{E}, a, b, \mathcal{C} \equiv \mathcal{G}[\mathcal{D} \parallel \mathcal{E}] \land \mathsf{depends}(a, b, \mathcal{D}) \land \mathsf{depends}(b, a, \mathcal{E})$ 

<sup>1547</sup> With these definitions in place, we can show that EGV configurations are deadlock-free.

- LEMMA B.4. If depends(a, b, C) then  $a, b \in fn(C)$ .
- <sup>1550</sup> PROOF. By induction on the definition of depends(a, b, C).
- 1552 THEOREM B.5. *If*  $\Gamma$ ;  $\Delta \vdash C$ , *then*  $\neg$ deadlocked(C).

<sup>1553</sup> PROOF. By contradiction. Suppose deadlocked(C), that is:

 $\exists \mathcal{D}, \mathcal{E}, a, b. \ \mathcal{C} \equiv \mathcal{G}[\mathcal{D} \parallel \mathcal{E}] \land \mathsf{depends}(a, b, \mathcal{D}) \land \mathsf{depends}(b, a, \mathcal{E})$ 

1556 Thus by Lemma B.4,  $a, b \in fn(\mathcal{D})$  and  $b, a \in fn(\mathcal{E})$ . Then by Lemma 3.6, C must be ill-typed.  $\Box$ 

*Remark.* We regard blocked threads as deadlocked only if there is a cyclic dependency. It is perfectly possible for a configuration to include blocked threads without there being a deadlock.

- Deadlock-free open terms can block on external communication along a free endpoint.
- Deadlock-free closed terms can block on communication along an endpoint that appears in the return value of a program. This also amounts to being blocked on external communication.

All blocked threads can be ruled out by restricting the type of a program to be free of both session types and function types (the latter is necessary as closures can capture endpoints).

1567 1568

1528

1529

1530

1534

1535

1536 1537 1538

1539

1540

1541

1544

1545

1546

1555

1557

1558

1559

1560

1561

1562

#### 1569 C SUPPLEMENT TO SECTION 3 (METATHEORY OF EGV)

# <sup>1570</sup> C.1 Preservation

<sup>1571</sup> In this section, we present proofs that typeability is preserved by configuration reduction.

*C.1.1 Equivalence.* We begin by describing the properties of configuration equivalence. As de scribed in §3, typeability of configurations is *not* preserved by equivalence. Nonetheless, Lemma C.1
 shows that only the associativity of parallel composition may cause a configuration to be ill-typed.

LEMMA C.1. If  $\Gamma$ ;  $\Delta \vdash^{\phi} C$  and  $C \equiv D$ , where the derivation of  $C \equiv D$  does not contain a use of the axiom for associativity, then  $\Gamma$ ;  $\Delta \vdash^{\phi} D$ .

<sup>1579</sup> PROOF. By induction on the derivation of  $C \equiv D$ , examining the equivalence in both directions <sup>1580</sup> to account for symmetry. We show that a typing derivation of the left-hand side of an equivalence <sup>1581</sup> rule implies the existence of the right-hand side, and vice versa.

That reflexivity, transitivity, and symmetry of the equivalence relation respect typing follows
 immediately because equality of typing derivations is an equivalence relation.

We make implicit use of the induction hypothesis.

<sup>1585</sup> Congruence rules

Case Name restriction

$$\frac{C \equiv \mathcal{D}}{(va)C \equiv (va)\mathcal{D}}$$

$$\frac{\Gamma; \Delta, a: S^{\sharp} \vdash^{\phi} C}{\Gamma; \Delta \vdash^{\phi} (va)C} \quad \longleftrightarrow \quad \frac{\Gamma; \Delta, a: S^{\sharp} \vdash^{\phi} \mathcal{D}}{\Gamma; \Delta \vdash^{\phi} (va)\mathcal{D}}$$

Case Parallel Composition

$$\frac{C \equiv \mathcal{D}}{C \parallel \mathcal{E} \equiv \mathcal{D} \parallel \mathcal{E}}$$

There are three subcases, based on whether the parallel composition arises from T-Connect<sub>1</sub>, T-Connect<sub>2</sub>, or T-Mix.

Subcase T-MIX

$$\frac{\Gamma_{1};\Delta_{1} \vdash^{\phi_{1}} C \qquad \Gamma_{2};\Delta_{2} \vdash^{\phi_{2}} \mathcal{E}}{\Gamma_{1},\Gamma_{2};\Delta_{1},\Delta_{2} \vdash^{\phi_{1}+\phi_{2}} C \parallel \mathcal{E}} \iff \frac{\Gamma_{1};\Delta_{1} \vdash^{\phi_{1}} \mathcal{D} \qquad \Gamma_{2};\Delta_{2} \vdash^{\phi_{2}} \mathcal{E}}{\Gamma_{1},\Gamma_{2};\Delta_{1},\Delta_{2} \vdash^{\phi_{1}+\phi_{2}} \mathcal{D} \parallel \mathcal{E}}$$
Subcase T-CONNECT<sub>1</sub>

$$\frac{\Gamma_{1},a:S;\Delta_{1} \vdash^{\phi_{1}} C \qquad \Gamma_{2};\Delta_{2},a:\overline{S} \vdash^{\phi_{2}} \mathcal{E}}{\Gamma_{1},\Gamma_{2};\Delta_{1},\Delta_{2},a:S^{\sharp} \vdash^{\phi_{1}+\phi_{2}} C \parallel \mathcal{E}} \iff \frac{\Gamma_{1},a:S;\Delta_{1} \vdash^{\phi_{1}} \mathcal{D} \qquad \Gamma_{2};\Delta_{2},a:\overline{S} \vdash^{\phi_{2}} \mathcal{E}}{\Gamma_{1},\Gamma_{2};\Delta_{1},\Delta_{2},a:S^{\sharp} \vdash^{\phi_{1}+\phi_{2}} \mathcal{D} \parallel \mathcal{E}}$$
Subcase T-CONNECT<sub>2</sub>

$$\frac{\Gamma_{1};\Delta_{1},a:\overline{S} \vdash^{\phi_{1}} C \qquad \Gamma_{2},a:S;\Delta_{2} \vdash^{\phi_{2}} \mathcal{E}}{\Gamma_{1},\Gamma_{2};\Delta_{1},\Delta_{2},a:S^{\sharp} \vdash^{\phi_{1}+\phi_{2}} \mathcal{D} \parallel \mathcal{E}} \iff \frac{\Gamma_{1};\Delta_{1},a:\overline{S} \vdash^{\phi_{1}} \mathcal{D} \qquad \Gamma_{2},a:S;\Delta_{2} \vdash^{\phi_{2}} \mathcal{E}}{\Gamma_{1},\Gamma_{2};\Delta_{1},\Delta_{2},a:S^{\sharp} \vdash^{\phi_{1}+\phi_{2}} \mathcal{D} \parallel \mathcal{E}}$$

Proc. ACM Program. Lang., Vol. POPL, No. 1, Article 1. Publication date: November 2019.

#### 1618 Equivalence Axioms

1:34

## **Case** $C \parallel \mathcal{D} \equiv \mathcal{D} \parallel C$

There are three subcases, based on which rule is used for parallel composition. **Subcase** T-MIX

$$\frac{\Gamma_{1}; \Delta_{1} \vdash^{\phi_{1}} C \qquad \Gamma_{2}; \Delta_{2} \vdash^{\phi_{2}} \mathcal{D}}{\Gamma_{1}, \Gamma_{2}; \Delta_{1}, \Delta_{2} \vdash^{\phi_{1}+\phi_{2}} C \parallel \mathcal{D}} \quad \Longleftrightarrow \quad \frac{\Gamma_{2}; \Delta_{2} \vdash^{\phi_{2}} \mathcal{D} \qquad \Gamma_{1}; \Delta_{1} \vdash^{\phi_{1}} C}{\Gamma_{1}, \Gamma_{2}; \Delta_{1}, \Delta_{2} \vdash^{\phi_{2}+\phi_{1}} \mathcal{D} \parallel C}$$

Subcase T-CONNECT<sub>1</sub>

$$\frac{\Gamma_{1}, a: S; \Delta_{1} \vdash^{\phi_{1}} C \qquad \Gamma_{2}; \Delta_{2}, a: \overline{S} \vdash^{\phi_{2}} \mathcal{D}}{\Gamma_{1}, \Gamma_{2}; \Delta_{1}, \Delta_{2}, a: S^{\sharp} \vdash^{\phi_{1} + \phi_{2}} C \parallel \mathcal{D}} \iff \frac{\Gamma_{2}; \Delta_{2}, a: \overline{S} \vdash^{\phi_{2}} \mathcal{D} \qquad \Gamma_{1}, a: S; \Delta_{1} \vdash^{\phi_{1}} C}{\Gamma_{1}, \Gamma_{2}; \Delta_{1}, \Delta_{2}, a: S^{\sharp} \vdash^{\phi_{2} + \phi_{1}} \mathcal{D} \parallel C}$$

**Subcase** T-CONNECT<sub>2</sub>

$$\frac{\Gamma_{1}; \Delta_{1}, a: \overline{S} \vdash^{\phi_{1}} C \qquad \Gamma_{2}, a: S; \Delta_{2} \vdash^{\phi_{2}} \mathcal{D}}{\Gamma_{1}, \Gamma_{2}; \Delta_{1}, \Delta_{2}, a: S^{\sharp} \vdash^{\phi_{1}+\phi_{2}} C \parallel \mathcal{D}} \quad \iff \quad \frac{\Gamma_{2}, a: S; \Delta_{2} \vdash^{\phi_{2}} \mathcal{D} \qquad \Gamma_{1}; \Delta_{1}, a: \overline{S} \vdash^{\phi_{1}} C}{\Gamma_{1}, \Gamma_{2}; \Delta_{1}, \Delta_{2}, a: S^{\sharp} \vdash^{\phi_{2}+\phi_{1}} \mathcal{D} \parallel C}$$

**Case** 
$$C \parallel (va)\mathcal{D} \equiv (va)(C \parallel \mathcal{D})$$
 if  $a \notin fn(C)$ 

There are again three subcases based on which parallel composition rule is used. The exact rule does not affect the discussion, so without loss of generality we assume this is T-MIX.

$$\frac{\Gamma_{1};\Delta_{1} \vdash^{\phi_{1}} C}{\Gamma_{1};\Gamma_{2};\Delta_{1},\Delta_{2} \vdash^{\phi_{1}+\phi_{2}} C \parallel (va)\mathcal{D}} \longleftrightarrow \frac{\Gamma_{1};\Delta_{1} \vdash^{\phi_{1}} C}{\Gamma_{2};\Delta_{2},a:S^{\sharp} \vdash^{\phi_{2}} \mathcal{D}} \xrightarrow{\Gamma_{1};\Delta_{1} \vdash^{\phi_{1}} C}{\Gamma_{1},\Gamma_{2};\Delta_{1},\Delta_{2},a:S^{\sharp} \vdash^{\phi_{1}+\phi_{2}} C \parallel \mathcal{D}}$$

In the left-to-right direction, that  $\Gamma_1, \Gamma_2; \Delta_1, \Delta_2, a : S^{\sharp}$  is well-defined follows because  $a \notin fn(C)$ .

**Case** 
$$(va)(vb)C \equiv (vb)(va)C$$

$$\frac{\begin{array}{c} \Gamma; \Delta, a: S^{\sharp}, b: T^{\sharp} \vdash^{\phi} C}{\Gamma; \Delta, a: S^{\sharp} \vdash^{\phi} (vb)C} \\ \hline \\ \hline \Gamma; \Delta \vdash^{\phi} (va)(vb)C \\ \hline \end{array} \longleftrightarrow \frac{\begin{array}{c} \Gamma; \Delta, b: T^{\sharp}, a: S^{\sharp} \vdash^{\phi} C}{\Gamma; \Delta, b: T^{\sharp} \vdash^{\phi} (va)C} \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \end{array}$$

**Case**  $a(\overrightarrow{V}) \nleftrightarrow b(\overrightarrow{W}) \equiv b(\overrightarrow{W}) \nleftrightarrow a(\overrightarrow{V})$ 

$$\begin{array}{ccc} {}^{1663} \\ {}^{1664} \\ {}^{1665} \\ {}^{1666} \end{array} & \begin{array}{c} S/\overrightarrow{A} = \overrightarrow{T/\overrightarrow{B}} & \Gamma_1 \vdash \overrightarrow{V} : \overrightarrow{A} & \Gamma_2 \vdash \overrightarrow{W} : \overrightarrow{B} \\ \hline{\Gamma_1, \Gamma_2; a : S, b : T \vdash^{\circ} a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})} & \longleftrightarrow \end{array} & \begin{array}{c} T/\overrightarrow{B} = \overrightarrow{S/A} & \Gamma_2 \vdash \overrightarrow{W} : \overrightarrow{B} & \Gamma_1 \vdash \overrightarrow{V} : \overrightarrow{A} \\ \hline{\Gamma_1, \Gamma_2; a : S, b : T \vdash^{\circ} b(\overrightarrow{W}) \longleftrightarrow a(\overrightarrow{V})} \end{array}$$

Proc. ACM Program. Lang., Vol. POPL, No. 1, Article 1. Publication date: November 2019.

| 67 Th         | e above holds because $S/\overrightarrow{A} = \overline{T/\overrightarrow{B}} \iff T/\overrightarrow{B} = \overline{S/\overrightarrow{A}}$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| 908<br>(40    | $\rightarrow$ $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         |
| 570           | $S/\dot{A} = T/\dot{B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |
| 70            | $\iff$ (duality)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                         |
| 72            | $\overline{\overline{S/A}} - \overline{T/B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |
| 73            | $\iff (\text{duality is involutive})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                         |
| 74            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         |
| 5             | S/A = I/B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |
| 6             | $\stackrel{\text{(equality is symmetric)}}{\longrightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |
| 7             | $T/\overline{B} = S/\overline{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         |
| 8             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         |
| 9             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         |
| o Case        | $\circ() \parallel C \equiv C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |
| 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         |
| 2             | $\overline{\cdot}$ + () : 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         |
| 5<br>4        | $\overline{:: + \stackrel{\circ}{\vdash} \circ ()}$ $\Gamma: \land \vdash^{\phi} C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |
| 5             | $\frac{1}{1} \frac{1}{1} \frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |
| 6             | $1; \Delta \vdash^{\tau} \circ () \parallel C \qquad \iff 1; \Delta \vdash^{\tau} C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |
| 7             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         |
| 8 Case        | (va)(vb)(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |
| 9             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         |
| 0             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         |
| 1             | $\overline{S}/\epsilon = \overline{\overline{T}/\epsilon}$ $\overline{\cdot + \epsilon : \epsilon}$ $\overline{\cdot + \epsilon : \epsilon}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |
| 2             | $\frac{\overline{b:T:\cdot \vdash^{\circ} 4b}}{\overline{d} : \overline{S} \cdot \overline{b} : \overline{T} \vdash^{\circ} a(\epsilon) \longleftrightarrow b(\epsilon)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |
| $\frac{3}{a}$ | $\frac{1}{\sum \left(\frac{1}{2}\right)^{2} \left(\frac{1}{2}\right)^{2}} \frac{1}{\left(\frac{1}{2}\right)^{2} \left(\frac{1}{2}\right)^{2}} \frac{1}{\left(\frac{1}{2}\right)^{2} \left(\frac{1}{2}\right)^{2} \left(\frac{1}{2}$ |                                                         |
| 4 <u>u</u> .  | $\frac{1}{2} \frac{1}{2} \frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |
| در<br>۱۵      | $\frac{1}{2} \frac{1}{2} \frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |
| 7             | (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                         |
| 8             | $\frac{\Gamma: \Lambda \vdash^{\phi} (va)(vb)(4a \parallel 4b \parallel a(\epsilon) \leftrightarrow b(\epsilon))}{\Gamma: \Lambda \vdash^{\phi} (va)(vb)(4a \parallel 4b \parallel a(\epsilon) \leftrightarrow b(\epsilon)) \parallel C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \longrightarrow \Gamma \cdot \Lambda \vdash^{\phi} C$ |
| 9             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | → 1, <u>3</u> + 0                                       |
| 0             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         |
| 01            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         |

While it is true that re-associating parallel composition may cause a configuration to be ill-typed, Lemma C.2 shows that it is always possible to re-associate parallel composition either directly, or by first commuting two subconfigurations.

LEMMA C.2 (Associativity).

• If  $\Gamma; \Delta \vdash^{\phi} C \parallel (\mathcal{D} \parallel \mathcal{E})$ , then either  $\Gamma; \Delta \vdash^{\phi} (C \parallel \mathcal{D}) \parallel \mathcal{E}$  or  $\Gamma; \Delta \vdash^{\phi} (C \parallel \mathcal{E}) \parallel \mathcal{D}$ . • If  $\Gamma; \Delta \vdash^{\phi} (C \parallel D) \parallel \mathcal{E}$ , then either  $\Gamma; \Delta \vdash^{\phi} C \parallel (D \parallel \mathcal{E})$  or  $\Gamma; \Delta \vdash^{\phi} D \parallel (C \parallel \mathcal{E})$ .

PROOF. The cases where either parallel composition arises by T-MIX are unproblematic and can be re-associated without jeopardising typeability. Therefore, we concentrate on the cases where both compositions arise via T-CONNECT<sub>i</sub>. 

Case  $C \parallel (D \parallel \mathcal{E})$ 

By the assumption that  $\Gamma; \Delta \vdash \phi C \parallel (\mathcal{D} \parallel \mathcal{E})$  we have that  $\Gamma = \Gamma_1, \Gamma_2, \Gamma_3$ , and  $\Delta = \Delta_1, \Delta_2, \Delta_3, a : S^{\sharp}, b : T^{\sharp}$ , and  $\phi = \phi_1 + \phi_2 + \phi_3$ . There are 8 cases, based on whether  $a, b \in fn(C)$  or  $a, b \in fn(\mathcal{D})$  (it cannot be the case that  $a, b \in fn(\mathcal{E})$ , as  $\mathcal{E}$  only occurs under a single parallel composition), and the exact dualisation (i.e., whether composition happens via T-CONNECT<sub>1</sub> or T-CONNECT<sub>2</sub>).

Of these, we are only interested in the cases where the sharing of the names differs, as opposed
 to the dualisation. Thus, we consider the following two cases, where both compositions occur using
 T-CONNECT<sub>1</sub>:

<sup>1723</sup> (1)  $\Gamma_1, a: S; \Delta_1 \vdash {\phi_1} C$ , and  $\Gamma_2, b: T; \Delta_2, a: \overline{S} \vdash {\phi_2} D$ , and  $\Gamma_3; \Delta_3, b: \overline{T} \vdash {\phi_3} \mathcal{E}$ 

(2) 
$$\Gamma_1, a: S; \Delta_1 \vdash^{\varphi_1} C$$
, and  $\Gamma_2, b: T; \Delta_2 \vdash^{\varphi_2} D$ , and  $\Gamma_3; \Delta_3, a: S, b: T \vdash^{\varphi_3} E$ 

**Subcase**  $a \in fn(C), a, b \in \mathcal{D}, b \in \mathcal{E}$ 

$$\frac{\Gamma_{1}, a: S; \Delta_{1} \vdash^{\phi_{1}} C}{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}; \Delta_{1}, \Delta_{2}, \Delta_{3}, a: \overline{S} \vdash^{\phi_{2}} \mathcal{D} \qquad \Gamma_{3}; \Delta_{3}, b: \overline{T} \vdash^{\phi_{3}} \mathcal{E}}{\Gamma_{2}, \Gamma_{3}; \Delta_{2}, \Delta_{3}, a: \overline{S}, b: T^{\sharp} \vdash^{\phi_{2} + \phi_{3}} \mathcal{D} \parallel \mathcal{E}}$$

1732<br/>1733As  $\mathcal{D}$  contains both a and b, associativity does not alter the sharing of names and may be applied<br/>safely.1734safely.

$$\frac{\Gamma_{1}, a: S; \Delta_{1} \vdash^{\phi_{1}} C \qquad \Gamma_{2}, b: T; \Delta_{2}, a: \overline{S} \vdash^{\phi_{2}} \mathcal{D}}{\Gamma_{1}, \Gamma_{2}, b: T; \Delta_{1}, \Delta_{2}, a: S^{\sharp} \vdash^{\phi_{1} + \phi_{2}} C \parallel \mathcal{D}} \qquad \Gamma_{3}; \Delta_{3}, b: \overline{T} \vdash^{\phi_{3}} \mathcal{E}}{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}; \Delta_{1}, \Delta_{2}, \Delta_{3}, a: S^{\sharp}, b: T^{\sharp} \vdash^{\phi_{1} + \phi_{2} + \phi_{3}} (C \parallel \mathcal{D}) \parallel \mathcal{E}}$$

1740 **Subcase**  $a \in fn(C); b \in \mathcal{D}; a, b \in \mathcal{E}$ 

$$\frac{\Gamma_{2}, b: T; \Delta_{2} \vdash^{\phi_{2}} \mathcal{D} \qquad \Gamma_{3}; \Delta_{3}, a: \overline{S}, b: \overline{T} \vdash^{\phi_{3}} \mathcal{E}}{\Gamma_{2}, \Gamma_{3}; \Delta_{2}, \Delta_{3}, a: \overline{S}, b: T^{\sharp} \vdash^{\phi_{2} \neq \phi_{3}} \mathcal{D} \parallel \mathcal{E}}$$

$$\frac{\Gamma_{1}, a: S; \Delta_{1} \vdash^{\phi_{1}} \mathcal{C} \qquad \Gamma_{2}, \Gamma_{3}; \Delta_{2}, \Delta_{3}, a: \overline{S}, b: T^{\sharp} \vdash^{\phi_{2} \neq \phi_{3}} \mathcal{D} \parallel \mathcal{E}}{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}; \Delta_{1}, \Delta_{2}, \Delta_{3}, a: S^{\sharp}, b: T^{\sharp} \vdash^{\phi_{1} + \phi_{2} + \phi_{3}} \mathcal{C} \parallel (\mathcal{D} \parallel \mathcal{E})$$

Here, we may not apply associativity directly. But, we may first commute  $\mathcal D$  and  $\mathcal E$ :

$$\frac{\Gamma_{1}, a: S; \Delta_{1} \vdash^{\phi_{1}} C}{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}; \Delta_{1}, \Delta_{2}, \Delta_{3}, a: \overline{S}, b: \overline{T} \vdash^{\phi_{3}} \mathcal{E} \qquad \Gamma_{2}, b: T; \Delta_{2} \vdash^{\phi_{2}} \mathcal{D}}{\Gamma_{2}, \Gamma_{3}; \Delta_{2}, \Delta_{3}, a: \overline{S}, b: T^{\sharp} \vdash^{\phi_{2} + \phi_{3}} \mathcal{E} \parallel \mathcal{D}}$$

and from here we may safely re-associate to the left:

$$\frac{\Gamma_{2}, a: S; \Delta_{2} \vdash^{\phi_{1}} C \qquad \Gamma_{3}; \Delta_{3}, a: \overline{S}, b: \overline{T} \vdash^{\phi_{3}} \mathcal{E}}{\Gamma_{2}, \Gamma_{3}; \Delta_{2}, \Delta_{3}, a: S^{\sharp}, b: \overline{T} \vdash^{\phi_{1}+\phi_{2}} \mathcal{D} \parallel \mathcal{E}} \Gamma_{3}, b: T; \Delta_{3} \vdash^{\phi_{3}} \mathcal{D}}{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}; \Delta_{1}, \Delta_{2}, \Delta_{3}, a: S^{\sharp}, b: T^{\sharp} \vdash^{\phi_{1}+\phi_{2}+\phi_{3}} (C \parallel \mathcal{E}) \parallel \mathcal{D}}$$

**Case**  $(C \parallel \mathcal{D}) \parallel \mathcal{E}$ 

(1) 
$$\Gamma_1, a: S; \Delta_1 \vdash^{\phi_1} C$$
, and  $\Gamma_2, b: T; \Delta_2, a: \overline{S} \vdash^{\phi_2} \mathcal{D}$ , and  $\Gamma_3; \Delta_3, b: \overline{T} \vdash^{\phi_3} \mathcal{E}$ 

(2)  $\Gamma_1, a: S, b: T; \Delta_1 \vdash^{\phi_1} C$ , and  $\Gamma_2; \Delta_2, b: \overline{T} \vdash^{\phi_2} \mathcal{D}$ , and  $\Gamma_3; \Delta_3, a: \overline{S} \vdash^{\phi_3} \mathcal{E}$ 

**Subcase**  $a \in C; a, b \in \mathcal{D}; b \in \mathcal{E}$ 

Proc. ACM Program. Lang., Vol. POPL, No. 1, Article 1. Publication date: November 2019.

1765 Assumption:

1767 1768

1769 1770

$$\frac{\Gamma_{1}, a: S; \Delta_{1} \vdash^{\phi_{1}} C \qquad \Gamma_{2}, b: T; \Delta_{2}, a: S \vdash^{\phi_{2}} \mathcal{D}}{\Gamma_{1}, \Gamma_{2}, b: T; \Delta_{1}, \Delta_{2}, a: S^{\sharp} \vdash^{\phi_{1} + \phi_{2}} C \parallel \mathcal{D}} \qquad \Gamma_{3}; \Delta_{3}, b: \overline{T} \vdash^{\phi_{3}} \mathcal{E}}$$

$$\frac{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}; \Delta_{1}, \Delta_{2}, \Delta_{3}, a: S^{\sharp}, b: T^{\sharp} \vdash^{\phi_{1} + \phi_{2} + \phi_{3}} (C \parallel \mathcal{D}) \parallel \mathcal{E}}{\Gamma_{3}; \Delta_{3}, b: T \vdash^{\phi_{3}} \mathcal{E}}$$

Applying associativity here does not make the configuration ill-typed, as  $\mathcal{D}$  contains both names:

$$\frac{\Gamma_{2}, b: T; \Delta_{2}, a: \overline{S} \vdash^{\phi_{2}} \mathcal{D} \qquad \Gamma_{3}; \Delta_{3}, b: \overline{T} \vdash^{\phi_{3}} \mathcal{E}}{\Gamma_{2}, \Gamma_{3}; \Delta_{2}, \Delta_{3}, a: \overline{S}, b: T^{\sharp} \vdash^{\phi_{2} + \phi_{3}} \mathcal{D} \parallel \mathcal{E}}$$

$$\frac{\Gamma_{1}, a: S; \Delta_{1} \vdash^{\phi_{1}} \mathcal{C} \qquad \Gamma_{2}, \Gamma_{3}; \Delta_{2}, \Delta_{3}, a: \overline{S}, b: T^{\sharp} \vdash^{\phi_{1} + \phi_{2} + \phi_{3}} \mathcal{D} \parallel \mathcal{E}}{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}; \Delta_{1}, \Delta_{2}, \Delta_{3}, a: S^{\sharp}, b: T^{\sharp} \vdash^{\phi_{1} + \phi_{2} + \phi_{3}} \mathcal{C} \parallel (\mathcal{D} \parallel \mathcal{E})$$

1776 **Subcase**  $a, b \in C; a \in \mathcal{D}; b \in \mathcal{E}$ 

Assumption:

$$\frac{\Gamma_{1}, a: S, b: T; \Delta_{1} \vdash^{\phi_{1}} C \qquad \Gamma_{2}; \Delta_{2}, a: \overline{S} \vdash^{\phi_{2}} \mathcal{D}}{\Gamma_{2}, \Gamma_{3}, b: T; \Delta_{2}, \Delta_{3}, a: S^{\sharp} \vdash^{\phi_{2} + \phi_{3}} C \parallel \mathcal{D}} \qquad \Gamma_{3}; \Delta_{3}, b: \overline{T} \vdash^{\phi_{3}} \mathcal{E}}$$

$$\frac{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}; \Delta_{1}, \Delta_{2}, \Delta_{3}, a: S^{\sharp}, b: T^{\sharp} \vdash^{\phi_{1} + \phi_{2} + \phi_{3}} (C \parallel \mathcal{D}) \parallel \mathcal{E}}{\Gamma_{3}; \Delta_{3}, b: \overline{T} \vdash^{\phi_{3}} \mathcal{E}}$$

<sup>1783</sup> By commutativity:

1784 1785 1786

1787 1788

1795

1796

$$\frac{\Gamma_{2};\Delta_{2},a:\overline{S}\models^{\phi_{2}}\mathcal{D}\qquad\Gamma_{1},a:S,b:T;\Delta_{1}\models^{\phi_{1}}C}{\Gamma_{2},\Gamma_{3},b:T;\Delta_{2},\Delta_{3},a:S^{\sharp}\models^{\phi_{2}+\phi_{1}}\mathcal{D}\parallel C}\Gamma_{3};\Delta_{3},b:\overline{T}\models^{\phi_{3}}\mathcal{E}$$

$$\frac{\Gamma_{1},\Gamma_{2},\Gamma_{3};\Delta_{1},\Delta_{2},\Delta_{3},a:S^{\sharp},b:T^{\sharp}\models^{\phi_{1}+\phi_{2}+\phi_{3}}(\mathcal{D}\parallel C)\parallel\mathcal{E}$$

By associativity:

$$\frac{\Gamma_{1}, a: S, b: T; \Delta_{1} \vdash^{\phi_{1}} C \qquad \Gamma_{3}; \Delta_{3}, b: \overline{T} \vdash^{\phi_{3}} \mathcal{E}}{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}; \Delta_{1}, \Delta_{2}, \Delta_{3}, a: S; \Delta_{1}, \Delta_{3}, b: T^{\sharp} \vdash^{\phi_{1} + \phi_{3}} C \parallel \mathcal{E}}$$

as required.

*C.1.2 Configuration Reduction.* We may now show that configuration reduction preserves
 typeability of configurations. We begin by stating some auxiliary results about substitution and
 evaluation contexts.

<sup>1800</sup> Typing of terms is preserved by substitution.

1801 1802 Lemma C.3 (Substitution). *If*:

1803 (1)  $\Gamma_1 \vdash M : B$ 

1804 (2)  $\Gamma_2, x : B \vdash N : A$ 

1805 (3)  $\Gamma_1, \Gamma_2$  is well-defined

1806 then  $\Gamma_1, \Gamma_2 \vdash N\{M/x\} : A$ .

<sup>1807</sup> PROOF. By induction on the derivation of  $\Gamma_2$ ,  $x : B \vdash N : A$ .

Lemma C.4 shows that a subterm of a well-typed evaluation context E (and therefore also a pure evaluation context P) is typeable with a subset of the type environment. Lemma C.5 states that the subterm of a well-typed evaluation context can be replaced. Both follow the formulation of Gay and Vasconcelos [2010].

1813

| 1862         |                                                                                                                                                                                                                          |    |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1381         | $[1, 1_0] \mapsto \mathbb{E} \left[ \Phi E \right] \mathbf{tork} \lambda \mathbf{x} M$                                                                                                                                   |    |
| 1860         | $\frac{1_{1}, 1_{2} \vdash \Psi_{L}[IOTK AX, M] : A}{\Gamma_{L} \Gamma_{L} \Gamma_{L} + \Psi_{L} \Gamma[C_{L} \Gamma_{L} - 1_{L}]}$                                                                                      |    |
| 1859         | $\Gamma_{c} \Gamma_{b} \models \bullet F[fork \lambda x M] \cdot A$                                                                                                                                                      |    |
| 1858         | Assumption:                                                                                                                                                                                                              |    |
| 1857         | Lase E-fork                                                                                                                                                                                                              |    |
| 1856         | Coop E Forly                                                                                                                                                                                                             |    |
| 1855         | consider the case where $\phi = \bullet$ ; the cases where $\phi = \circ$ are similar.                                                                                                                                   |    |
| 1854         | <b>PROOF.</b> By induction on the derivation of $C \longrightarrow \mathcal{D}$ . Where there is a choice of value for $\phi$ ,                                                                                          | we |
| 1853         | ,                                                                                                                                                                                                                        |    |
| 1851         | If $\Gamma; \Delta \vdash^{\phi} C$ and $C \longrightarrow D$ , then there exist $\Gamma', \Delta'$ such that $\Gamma; \Delta \longrightarrow^{?} \Gamma'; \Delta'$ and $\Gamma': \Delta' \vdash^{\phi} D$ .             |    |
| 1850         | Assume $\Gamma$ only contains entries of the form $a_i : S_i$                                                                                                                                                            |    |
| 1849         | Theorem 3.2 (Preservation (Configurations)                                                                                                                                                                               |    |
| 1848         | PROOF. By induction on the structure of $\mathcal{G}$ .                                                                                                                                                                  |    |
| 1847         |                                                                                                                                                                                                                          | _  |
| 1846         | then there exist some $\Gamma''', \Delta'''$ such that $\Gamma'''; \Delta''' \vdash^{\phi} \mathcal{G}[\mathcal{C}']$ and $\Gamma; \Delta \longrightarrow^{?} \Gamma'''; \Delta'''$ .                                    |    |
| 1845         | • The position of <b>D</b> in <b>D'</b> corresponds to that of the hole in $\mathcal{G}$                                                                                                                                 |    |
| 1844         | • $\Gamma''; \Delta'' \vdash^{\phi'} C'$ for some $\Gamma'', \Delta''$ such that $\Gamma'; \Delta' \longrightarrow^{?} \Gamma''; \Delta''$                                                                               |    |
| 1843         | • <b>D'</b> is a subderivation of <b>D</b> concluding that $\Gamma'; \Delta' \vdash \phi' C$ for some $\Gamma', \Delta', \phi'$                                                                                          |    |
| 1842         | • <b>D</b> is a derivation of $\Gamma$ ; $\Delta \vdash^{\phi} G[C]$                                                                                                                                                     |    |
| 1841         | Lemma C.7 (Replacement (configurations)). If:                                                                                                                                                                            |    |
| 1839         | environments are related by the environment reduction relation.                                                                                                                                                          |    |
| 1838         | is slightly complicated by the fact that $(va)\mathcal{G}$ binds a variable <i>a</i> , but replacement is safe if the typi                                                                                               | ng |
| 1837         | Lemma C.7 states that we may replace a subconfiguration of a configuration context. The lemm                                                                                                                             | na |
| 1836         |                                                                                                                                                                                                                          | _  |
| 1835         | PROOF. By induction on the structure of $G$ .                                                                                                                                                                            |    |
| 1834         | of $D'$ in $D$ corresponds to the position of the hole in $\mathcal{G}$ .                                                                                                                                                |    |
| 1833         | there exist $\Gamma', \Delta', \phi'$ such that <b>D</b> has a subderivation <b>D</b> ' that concludes $\Gamma'; \Delta' \vdash \phi'$ C, and the positive                                                               | on |
| 1832         | LEMMA C.6 (TYPEABILITY OF SUBCONFIGURATIONS). If <b>D</b> is a derivation of $\Gamma; \Delta \vdash^{\phi} G[C]$ , the                                                                                                   | en |
| 1830         | configuration contexts. Lemma C.6 states how we may type subconfigurations.                                                                                                                                              |    |
| 1829         | To prove preservation on configurations, we must first establish some auxiliary results                                                                                                                                  | on |
| 1828         | TROOT. By induction on the structure of <i>D</i> .                                                                                                                                                                       |    |
| 1827         | <b>PROOF</b> By induction on the structure of $F$                                                                                                                                                                        |    |
| 1826         | then $\Gamma_1, \Gamma_3 \vdash E[N] : A$ .                                                                                                                                                                              |    |
| 1825         | • $\Gamma_1, \Gamma_3$ is well-defined                                                                                                                                                                                   |    |
| 1824         | • $\Gamma_3 + N : B$                                                                                                                                                                                                     |    |
| 1822         | • The position of $D'$ in $D$ corresponds to that of the hole in E                                                                                                                                                       |    |
| 1821         | • <b>D'</b> is a subderivation of <b>D</b> concluding $\Gamma_2 \vdash M : B$                                                                                                                                            |    |
| 1820         | • <b>D</b> is a derivation of $\Gamma_1, \Gamma_2 \vdash E[M] : A$                                                                                                                                                       |    |
| 1819         | Lemma C.5 (Replacement (evaluation contexts)). If:                                                                                                                                                                       |    |
| 1818         | r koor. By muuchon on the structure of <i>E</i> .                                                                                                                                                                        |    |
| 1817         | <b>PROOF</b> By induction on the structure of $F$                                                                                                                                                                        |    |
|              | of $D$ in $D$ corresponds to the position of the hole in $E$ .                                                                                                                                                           |    |
| 1816         | $f \mathbf{D}'$ in $\mathbf{D}$ connection denotes the presiding of the help in $\mathbf{E}$                                                                                                                             |    |
| 1815<br>1816 | and B such that $\Gamma = \Gamma_1, \Gamma_2$ , that <b>D</b> has a subderivation <b>D'</b> that concludes $\Gamma_2 \vdash M : B$ , and the positive $\Gamma_2 \vdash M : B$ and the positive $\Gamma_2 \vdash M : B$ . | on |

By Lemma C.4: 

 $\Gamma_2, x : S \vdash M : \mathbf{1}$  $\overline{\Gamma_2 \vdash \lambda x.M: S \multimap \mathbf{1}}$  $\overline{\Gamma_2} \vdash \mathbf{fork} \, \lambda x.M : \overline{S}$ 

By Lemma C.3,  $\Gamma_2, b : S \vdash M\{b/x\} : 1$ , and by Lemma C.5,  $\Gamma_1, a : \overline{S} \vdash E[a] : A$ . As duality is involutive,  $\overline{S} = S$ . 

**Reconstructing:** 

$$\frac{\Gamma_{1}, a:\overline{S} \vdash E[a]:A}{\Gamma_{1}, a:\overline{S}; \vdash^{\bullet} \bullet E[a]} \xrightarrow{\Gamma_{2}, b:S \vdash^{\circ} \circ M\{b/x\}} \frac{S/\epsilon = \overline{S}/\epsilon}{\Gamma_{2}; a:S, b:\overline{S} \vdash^{\circ} a(\epsilon) \leftrightarrow b(\epsilon)}$$

$$\frac{\Gamma_{1}, \Gamma_{2}; a:\overline{S}^{\sharp}, b:S^{\sharp} \vdash^{\bullet} \bullet E[a] \parallel \circ M\{b/x\} \parallel a(\epsilon) \leftrightarrow b(\epsilon)}{\Gamma_{1}, \Gamma_{2}; a:\overline{S}^{\sharp} \vdash^{\bullet} (vb)(\bullet E[a] \parallel \circ M\{b/x\} \parallel a(\epsilon) \leftrightarrow b(\epsilon))}$$

$$\frac{\Gamma_{1}, \Gamma_{2}; a:\overline{S}^{\sharp} \vdash^{\bullet} (va)(vb)(\bullet E[a] \parallel \circ M\{b/x\} \parallel a(\epsilon) \leftrightarrow b(\epsilon))}{\Gamma_{1}, \Gamma_{2}; \cdot \vdash^{\bullet} (va)(vb)(\bullet E[a] \parallel \circ M\{b/x\} \parallel a(\epsilon) \leftrightarrow b(\epsilon))}$$

Case E-Send

Assumption:

$$\frac{\Gamma_{1},\Gamma_{2} \vdash E[\text{send } U \ a] : C}{\Gamma_{1},\Gamma_{2},a:S; \cdot \vdash^{\bullet} \bullet E[\text{send } U \ a]} \qquad \frac{\overline{S}/\overrightarrow{A} = T/\overrightarrow{B} \qquad \Gamma_{3} \vdash \overrightarrow{V} : \overrightarrow{A} \qquad \Gamma_{4} \vdash \overrightarrow{W} : \overrightarrow{B}}{\Gamma_{3},\Gamma_{4};a:\overline{S},b:T \vdash^{\circ} a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})}$$

$$\frac{\Gamma_{1},\Gamma_{2},\Gamma_{3},\Gamma_{4};a:S^{\sharp},b:T \vdash^{\bullet} \bullet E[\text{send } U \ a] \parallel a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})}{\Gamma_{1},\Gamma_{2},\Gamma_{3},\Gamma_{4};a:S^{\sharp},b:T \vdash^{\bullet} \bullet E[\text{send } U \ a] \parallel a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})}$$

By Lemma C.4:

$$\frac{\Gamma_2 \vdash U : A}{\Gamma_2, a : !A.S' \vdash a : !A.S'}$$

$$\frac{IA.S' \vdash a : !A.S'}{\Gamma_2, a : !A.S' \vdash send \ U \ a : S'}$$

Thus, S = !A.S', and  $\overline{S} = ?A.\overline{S'}$ . We may therefore refine our original derivation:

$$\frac{\Gamma_{1},\Gamma_{2},a:!A.S' \vdash E[\text{send } U a]:C}{\Gamma_{1},\Gamma_{2},a:!A.S'; \vdash \bullet \bullet E[\text{send } U a]} \qquad \frac{?A.\overline{S'}/\overrightarrow{A} = \overline{T/\overrightarrow{B}} \qquad \Gamma_{3} \vdash \overrightarrow{V}:\overrightarrow{A} \qquad \Gamma_{4} \vdash \overrightarrow{W}:\overrightarrow{B}}{\Gamma_{3},\Gamma_{4};a:?A.\overline{S'},b:T \vdash \bullet a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})}$$

$$\overline{\Gamma_{1},\Gamma_{2},\Gamma_{3},\Gamma_{4};a:!A.S'^{\ddagger},b:T \vdash \bullet E[\text{send } U a] \parallel a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})}$$

Since  $?A.\overline{S'}/\overrightarrow{A} = \overline{T/\overrightarrow{B}}$  is well-defined, we have that  $\overrightarrow{A} = \epsilon$ . By the definition of slicing, we have that  $\overline{T} = \overline{B_1 \cdots B_n A_n}$ , where  $\overrightarrow{B} = B_1, \dots, B_n$ . It follows that  $\overline{S'} \overrightarrow{A} = T \overrightarrow{B} A_n$ . By Lemma C.5, we have  $\Gamma_1, \Gamma_2, a : S' \vdash E[a] : C$ . **Reconstructing:** 

$$\frac{\Gamma_{1}, a: S' \vdash E[a]: C}{\Gamma_{1}, a: S'; \vdash^{\bullet} \bullet E[a]} \qquad \frac{\overline{S'}/\overrightarrow{A} = T/\overrightarrow{B} \cdot A \qquad \Gamma_{3} \vdash \overrightarrow{V}: \overrightarrow{A} \qquad \Gamma_{2}, \Gamma_{4} \vdash \overrightarrow{W} \cdot U: \overrightarrow{B} \cdot A}{\Gamma_{2}, \Gamma_{3}, \Gamma_{4}; a: \overline{S'}, b: T \vdash^{\circ} a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W} \cdot U)}$$
$$\overline{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}; a: S'^{\sharp}, b: T \vdash^{\bullet} \bullet E[a] \parallel a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W} \cdot U)}$$

Proc. ACM Program. Lang., Vol. POPL, No. 1, Article 1. Publication date: November 2019.

S. Fowler et al.

Finally, we must show environment reduction: 

$$\frac{!A.S' \longrightarrow S'}{\Gamma_1, \Gamma_2, \Gamma_3, \Gamma_4; a: (!A.S')^{\sharp}, b: T \longrightarrow \Gamma_1, \Gamma_2, \Gamma_3, \Gamma_4; a: S'^{\sharp}, b: T}$$

11 6'

as required. 

Case E-Receive

Assumption: 

$$\frac{\Gamma_{1}, a: S \vdash E[\text{receive } a]: C}{\Gamma_{1}, a: S; \vdash \bullet^{\bullet} E[\text{receive } a]} \xrightarrow{\overline{S}/\overrightarrow{A} = T/\overrightarrow{B}} \Gamma_{2}, \Gamma_{3} \vdash U \cdot \overrightarrow{V}: \overrightarrow{A}} \Gamma_{4} \vdash \overrightarrow{W}: \overrightarrow{B}}{\Gamma_{2}, \Gamma_{3}, \Gamma_{4}; a: \overline{S}, b: T \vdash^{\circ} a(U \cdot \overrightarrow{V}) \leftrightarrow b(\overrightarrow{W})}$$
$$\overline{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}; a: S^{\sharp}, b: T \vdash^{\bullet} \bullet E[\text{receive } a] \parallel a(U \cdot \overrightarrow{V}) \leftrightarrow b(\overrightarrow{W})}$$

By Theorem C.4:

$$\frac{a:?A.S' \vdash a:?A.S'}{a:?A.S' \vdash \mathbf{receive} \ a:(A \times S')}$$

Thus, we have that S = ?A.S' and  $\overline{S} = !A.\overline{S'}$ , and we may therefore refine the original typing derivation: 

$$\frac{\Gamma_{1}, a : ?A.S' \vdash E[\text{receive } a] : C}{\Gamma_{1}, a : ?A.S'; \vdash^{\bullet} E[\text{receive } a]} \qquad \frac{!A.\overline{S'}/A \cdot \overrightarrow{A'} = \overline{T/\overrightarrow{B}} \qquad \frac{\Gamma_{1} \vdash U : A \qquad \Gamma_{3} \vdash \overrightarrow{V} : \overrightarrow{A'}}{\Gamma_{2}, \Gamma_{3} \vdash U \cdot \overrightarrow{V} : A \cdot \overrightarrow{A'}} \qquad \Gamma_{4} \vdash \overrightarrow{W} : \overrightarrow{B}}{\Gamma_{2}, \Gamma_{3}, \Gamma_{4}; a : !A.\overline{S'}, b : T \vdash^{\circ} a(U \cdot \overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})}$$

By Lemma C.5, we have  $\Gamma_1, \Gamma_2, a : S' \vdash E[(U, a)] : C$  (that  $\Gamma_1, \Gamma_2$  is defined follows from the fact that  $\Gamma_1$  and  $\Gamma_2$  are sub-environments of the original typing environment and are therefore necessarily disjoint).

By the definition of slicing,  $|A.\overline{S'}/A \cdot \overrightarrow{A'} \iff \overline{S'}/\overrightarrow{A'}$ . Thus, recomposing:

$$\frac{\Gamma_{1},\Gamma_{2},a:S' \vdash E[(U,a)]:C}{\Gamma_{1},\Gamma_{2},a:S'; \vdash \bullet E[(U,a)]} \qquad \frac{\overline{S'}/\overrightarrow{A'} = T/\overrightarrow{B} \qquad \Gamma_{3} \vdash \overrightarrow{V}:\overrightarrow{A'} \qquad \Gamma_{4} \vdash \overrightarrow{W}:\overrightarrow{B}}{\Gamma_{3},\Gamma_{4};a:\overline{S'},b:T \vdash \bullet a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})}$$
$$\frac{\Gamma_{1},\Gamma_{2},\Gamma_{3},\Gamma_{4};a:S'^{\sharp},b:T \vdash \bullet e[(U,a)] \parallel a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})}{\Gamma_{1},\Gamma_{2},\Gamma_{3},\Gamma_{4};a:S'^{\sharp},b:T \vdash \bullet e[(U,a)] \parallel a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})}$$

Finally, we must show environment reduction:

$$\frac{?A.S' \longrightarrow S'}{\Gamma_1, \Gamma_2, \Gamma_3, \Gamma_4; a: (?A.{S'}^{\sharp}); b: T \longrightarrow \Gamma_1, \Gamma_2, \Gamma_3, \Gamma_4; a: {S'}^{\sharp}, b: T}$$

as required.

#### Case E-Close

Proc. ACM Program. Lang., Vol. POPL, No. 1, Article 1. Publication date: November 2019.

1:40

| 61 Assumption:                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                   |                                                            |                                               |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------|
| 62<br>63                                                       | $\Gamma_2, b: T \vdash E'[$ close                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <i>b</i> ] : 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\overline{S}/\epsilon = \overline{\overline{T}/\epsilon}$                                                                                                                                                                                        | $\overline{\cdot \vdash \epsilon : \epsilon}$              | $\overline{\cdot \vdash \epsilon : \epsilon}$ |
| $\Gamma_1, a: S \vdash E[\textbf{close } a]: C$                | $\Gamma_2, b:T; \cdot \vdash^{\circ} \circ E'[\mathbf{cl}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ose b]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\cdot; a:\overline{S}, b$                                                                                                                                                                                                                        | $:\overline{T} \vdash^{\circ} a(\epsilon) \leftrightarrow$ | $\rightarrow b(\epsilon)$                     |
| $\Gamma_1, a: S; \vdash^{\bullet} \bullet E[$ <b>close</b> $a$ | $\Gamma_2; a: \overline{S}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\overline{b}, b: T^{\sharp} \vdash^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $E'[close b] \parallel$                                                                                                                                                                                                                           | $a(\epsilon) \nleftrightarrow b(\epsilon)$                 |                                               |
| $\Gamma_1, \Gamma_2;$                                          | $a:S^{\sharp},b:T^{\sharp} \vdash^{\bullet} \bullet E[close]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a] ∥ ∘E'[cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>lose</b> $b$ ] $\parallel a(\epsilon)$                                                                                                                                                                                                         | $\rightsquigarrow b(\epsilon)$                             |                                               |
| 8 E <sub>1</sub> E <sub>2</sub> ;                              | $a \cdot S^{\sharp} \vdash^{\bullet} (vh) (\bullet F[close a])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $     \circ F'[clo$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $a(\epsilon) \approx b \parallel a(\epsilon) \approx b \parallel a(\epsilon) \approx b \parallel b(\epsilon) \approx b \parallel b(\epsilon) \ll b \parallel b(\epsilon) \ll b \parallel b(\epsilon) \ll b \parallel b(\epsilon) \ll b(\epsilon)$ | $h(\epsilon)$                                              |                                               |
| )                                                              | $(vb)(\bullet E[close a])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\  \circ F'[c] $ | $\frac{\mathbf{se} \ b}{\mathbf{se} \ b} \parallel a(\varepsilon) \leftrightarrow \varepsilon$                                                                                                                                                    | $\frac{h(\epsilon)}{h(\epsilon)}$                          |                                               |
| 0                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>se</b> <i>v</i> ]    <i>u</i> (e)(,                                                                                                                                                                                                            | <i>v</i> (c))                                              |                                               |
| By Lemma C 4:                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                   |                                                            |                                               |
| by Lemma C.4.                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                   |                                                            |                                               |
| <i>a</i> :                                                     | End $\vdash a$ : End                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $b: End \vdash b: I$                                                                                                                                                                                                                              | End                                                        |                                               |
| <i>a</i> : Er                                                  | nd ⊢ <b>close</b> <i>a</i> : 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | : End ⊢ <b>close</b>                                                                                                                                                                                                                              | e b : 1                                                    |                                               |
| By Lemma C.5, we have the                                      | nat $\Gamma_1 \vdash E[()] : C$ and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | at $\Gamma_2 \vdash E'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [()] : <b>1</b> . Thus                                                                                                                                                                                                                            | by T-Mix, w                                                | ve may show:                                  |
|                                                                | $\Gamma \vdash F[()] \cdot C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\Gamma_{2} \vdash F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ()] · <b>1</b>                                                                                                                                                                                                                                    | -                                                          | -                                             |
|                                                                | $\frac{\Gamma_1 + L[0] \cdot C}{\Gamma_1 + \Gamma_2 $ | $\frac{12 + L}{\Gamma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                   |                                                            |                                               |
|                                                                | $\frac{I_1; \cdot \vdash \bullet E[()]}{\bullet \bullet $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 <sub>2</sub> ; · ⊢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>○E[()]</u>                                                                                                                                                                                                                                     |                                                            |                                               |
|                                                                | $\Gamma_1, \Gamma_2; \cdot \vdash^{\bullet} \bullet E$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $[()] \parallel \circ E[$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ()]                                                                                                                                                                                                                                               |                                                            |                                               |
| as required.                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                   |                                                            |                                               |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                   |                                                            |                                               |
| Case E-Cancel                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                   |                                                            |                                               |
|                                                                | $\mathcal{F}[\mathbf{cancel}a]$ –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\rightarrow \mathcal{F}[()]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>4 a</i>                                                                                                                                                                                                                                        |                                                            |                                               |
| Assumption                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 1011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 14                                                                                                                                                                                                                                              |                                                            |                                               |
| Assumption.                                                    | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                   |                                                            |                                               |
|                                                                | $\Gamma \vdash E[can]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cel a]: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   |                                                            |                                               |
|                                                                | $\Gamma; \cdot \vdash^{\bullet} \bullet E[\bullet$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cancel a]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   |                                                            |                                               |
| By Lemma C.4, $\Gamma = \Gamma_1$ , I                          | <sub>2</sub> , where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                   |                                                            |                                               |
|                                                                | Γa ⊨ α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $7 \cdot S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                   |                                                            |                                               |
|                                                                | $\frac{\Gamma_2}{\Gamma_1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                   |                                                            |                                               |
|                                                                | $1_2 \vdash Cano$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                   |                                                            |                                               |
| Thus $\Gamma_2 = a : S$ . By Le                                | emma C.5, $\Gamma_1 \vdash E[()]$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С. Ву Т-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ZAP, we hav                                                                                                                                                                                                                                       | e that $a : S$                                             | $\vdash$ ⊢° $\notin a$ . Thus,                |
| recomposing:                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                   |                                                            |                                               |
|                                                                | $\Gamma \vdash E[()] : C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                   |                                                            |                                               |
|                                                                | $\overline{\Gamma_1; \cdot \vdash^{\bullet} \bullet E[()]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\overline{a:S;}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ⊦° <i>{ a</i>                                                                                                                                                                                                                                     |                                                            |                                               |
|                                                                | $\Gamma_1, a: S: \cdot \vdash^{\bullet}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • <i>E</i> [()]    4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ha ha                                                                                                                                                                                                                                             |                                                            |                                               |
| • 1                                                            | -1,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -10114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                   |                                                            |                                               |
| as required.                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                   |                                                            |                                               |
| Case E-Zap                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                   |                                                            |                                               |
| -                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                   |                                                            |                                               |
| $a \parallel a(U)$                                             | $\cdot \overrightarrow{V}) {\leftrightsquigarrow} b(\overrightarrow{W}) \longrightarrow { {\sharp} a \parallel}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\not \leq c_1 \parallel \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\parallel \not z c_n \parallel a(\overrightarrow{V}$                                                                                                                                                                                             | ) $\longleftrightarrow b(\overrightarrow{W})$              |                                               |
| where $fn(U) = \{c_i\}_i$ .                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                   |                                                            |                                               |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                   |                                                            |                                               |
| Ι                                                              | Proc. ACM Program. Lang., V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ol. POPL, N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lo. 1, Article 1. P                                                                                                                                                                                                                               | ublication date                                            | November 2019.                                |

2010 Assumption:

By the definition of slicing, we have that there exist some *A* and *S'* such that  $\overline{S} = !A.\overline{S'}$ . Thus, we may refine our judgement:

 $\frac{\overline{S/A} = \overline{T/B}}{\Gamma_1, \Gamma_2 \vdash U \cdot \overrightarrow{V} : \overrightarrow{A}} \quad \frac{\overline{\Gamma_3} \vdash \overrightarrow{W} : \overrightarrow{B}}{\Gamma_1, \Gamma_2, \Gamma_3; a : \overline{S}, b : T \vdash^{\circ} a(U \cdot \overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})}}{\Gamma_1, \Gamma_2, \Gamma_3; a : S^{\sharp}, b : T \vdash^{\circ} a(U \cdot \overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})}$ 

$$\frac{\frac{A.\overline{S'}}{A \cdot \overline{A'}} = \overline{T/B}}{\Gamma_{1}, \Gamma_{2} + U \cdot \overline{V} : A \cdot \overline{A'}} \qquad \Gamma_{3} + \overline{W} : \overline{B}}{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}; a : \overline{S}, b : T + a(U \cdot \overline{V}) \leftrightarrow b(\overline{W})} \\
\frac{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}; a : S^{\sharp}, b : T + a(U \cdot \overline{V}) \leftrightarrow b(\overline{W})}{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}; a : S^{\sharp}, b : T + a(U \cdot \overline{V}) \leftrightarrow b(\overline{W})}$$

By the definition of buffer typing, we have that  $\Gamma_1 \vdash U : A$ . By the definition of the reduction rule,  $fn(U) = \{c_i\}_i$ , and by assumption,  $\Gamma$  contains only runtime names. Thus, we may conclude that *U* is closed and therefore that  $\Gamma_1 = c_1 : S_1, \ldots, c_n : S_n$  for some session types  $S_1, \ldots, S_n$ .

By the definition of slicing, we have that  $!A.\overline{S'}/A\cdot \overrightarrow{A'} \iff \overline{S'}/\overrightarrow{A'}$ . Correspondingly, by T-BUFFER, we may show

$$\overline{S'/\vec{A'}} = \overline{T/\vec{B}} \qquad \Gamma_2 \vdash \overrightarrow{V} : \overrightarrow{A'} \qquad \Gamma_3 \vdash \overrightarrow{W} : \overrightarrow{B}$$
$$\Gamma_2, \Gamma_3; a : \overline{S'}, b : T \vdash^{\circ} a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})$$

By repeated applications of T-ZAP and T-MIX, we have that

$$\Gamma_2, \Gamma_3, c_1 : S_1, \ldots, c_n : S_n; a : \overline{S'}, b : T \vdash^{\circ} \notin c_1 \parallel \cdots \parallel \notin c_n \parallel a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})$$

Recomposing:

$$\frac{\overline{c_n:S_n;\cdot \vdash^{\circ} \notin c_n}}{\frac{\overline{c_1:S_1;\cdot \vdash^{\circ} \notin c_1}}{\Gamma_2, \Gamma_3, c_1:S_1, \dots, c_n:S_n; a:\overline{S'}, b:T \vdash^{\circ} \notin c_1} \xrightarrow{\overline{S'}/\overrightarrow{A'} = \overline{T/\overrightarrow{B}} \qquad \Gamma_2 \vdash \overrightarrow{V}:\overrightarrow{A'} \qquad \Gamma_3 \vdash \overrightarrow{W}:\overrightarrow{B}}{\Gamma_2, \Gamma_3; a:\overline{S'}, b:T \vdash^{\circ} a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})} \\
\frac{\overline{c_1:S_1;\cdot \vdash^{\circ} \notin c_1}}{\Gamma_2, \Gamma_3, c_1:S_1, \dots, c_n:S_n; a:\overline{S'}, b:T \vdash^{\circ} \notin c_1 \parallel \dots \parallel \notin c_n \parallel a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})}{\Gamma_2, \Gamma_3, c_1:S_1, \dots, c_n:S_n; a:S'', b:T \vdash^{\circ} \notin a \parallel \notin c_1 \parallel \dots \parallel \notin c_n \parallel a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})} \\$$

Finally, we must show environment reduction:

$$\frac{?A.S' \longrightarrow S'}{\Gamma_2, \Gamma_3, c_1 : S_1, \dots, c_n : S_n; a : (?A.S'^{\sharp}), b : T \longrightarrow \Gamma_2, \Gamma_3, c_1 : S_1, \dots, c_n : S_n; a : S'^{\sharp}, b : T}$$

as required.

Case E-CloseZap

 $\mathcal{F}[\text{close } a] \parallel \ddagger b \parallel a(\epsilon) \nleftrightarrow b(\epsilon) \longrightarrow \mathcal{F}[\text{raise}] \parallel \ddagger a \parallel \ddagger b \parallel a(\epsilon) \nleftrightarrow b(\epsilon)$ 

Proc. ACM Program. Lang., Vol. POPL, No. 1, Article 1. Publication date: November 2019.

1:42

Assumption: 2059 2060  $\underbrace{ \begin{array}{c} \overline{\Gamma, a: S \vdash E[\textbf{close } a]: C} \\ \overline{\Gamma, a: S; \cdot \vdash^{\bullet} \bullet E[\textbf{close } a]} \end{array}}_{\overline{\Gamma, a: S; \cdot \vdash^{\bullet} \bullet E[\textbf{close } a]} \qquad \underbrace{ \begin{array}{c} \overline{b: T; \cdot \vdash^{\circ} \notin b} \\ \hline \overline{b: T; \cdot \vdash^{\circ} \notin b} \\ \hline \overline{c; a: \overline{S}, b: \overline{T} \vdash^{\circ} a(\epsilon) \nleftrightarrow b(\epsilon)} \\ \hline \overline{c; a: \overline{S}, b: T^{\sharp} \vdash^{\circ} \# b \parallel a(\epsilon) \nleftrightarrow b(\epsilon)} \end{array}$ 2061 2062 2063 2064 2065  $\Gamma; a: S^{\sharp}, b: T^{\sharp} \vdash^{\bullet} \bullet E[$ **close** a]  $\parallel \pounds b \parallel a(\epsilon) \longleftrightarrow b(\epsilon)$ 2066 By Lemma C.4: 2067 2068  $a : End \vdash a : End$ 2069  $a: S \vdash close a: 1$ 2070 2071 We may therefore refine our original derivation: 2072 2073 2074  $End = End \quad \cdot \vdash \epsilon : \epsilon$  $\cdot \vdash \epsilon : \epsilon$  $\Gamma, a: \operatorname{End} \vdash E[\operatorname{close} a]: C \qquad \qquad b: \operatorname{End}; \cdot \vdash^{\circ} \notin b \qquad \qquad \because; a: \operatorname{End}, b: \operatorname{End} \vdash^{\circ} a(\epsilon) \nleftrightarrow b(\epsilon)$ 2075 2076  $\cdot; a: \mathsf{End}, b: \mathsf{End}^{\sharp} \vdash^{\circ} {}_{\epsilon} b \parallel a(\epsilon) \longleftrightarrow b(\epsilon)$  $\Gamma, a : End; \cdot \vdash^{\bullet} \bullet E[close a]$ 2077  $\Gamma$ : a : End<sup>#</sup>, b : End<sup>#</sup>  $\vdash^{\bullet} \bullet E[$ **close** a]  $\parallel 4b \parallel a(\epsilon) \longleftrightarrow b(\epsilon)$ 2078 2079 By Lemma C.5,  $\Gamma \vdash E[raise] : C$ . 2080 Thus, recomposing: 2081 2082 End = End  $\cdot \vdash \epsilon : \epsilon$  $\cdot \vdash \epsilon : \epsilon$ 2083  $\overline{b: \mathsf{End}; \cdot \vdash^{\circ} \not \downarrow b} \qquad \quad \overline{\cdot; a: \mathsf{End}, b: \mathsf{End} \vdash^{\circ} a(\epsilon) \mathsf{wid}(\epsilon)}$ 2084  $a: \operatorname{End}; \cdot \vdash^{\circ} \notin a$ 2085  $\cdot; a : \operatorname{End}, b : \operatorname{End}^{\sharp} \vdash^{\circ} {}_{2} b \parallel a(\epsilon) \longleftrightarrow b(\epsilon)$  $\Gamma \vdash E[raise] : C$  $\therefore a : \operatorname{End}^{\sharp}, b : \operatorname{End}^{\sharp} \vdash^{\circ} a \parallel b \parallel a(\epsilon) \longleftrightarrow b(\epsilon)$ 2086  $\Gamma \vdash^{\bullet} \bullet E[raise]$ 2087  $\Gamma: a: \operatorname{End}^{\sharp}, b: \operatorname{End}^{\sharp} \vdash^{\bullet} \bullet E[\operatorname{close} a] \parallel \frac{4}{2}b \parallel a(\epsilon) \longleftrightarrow b(\epsilon)$ 2088 2089 as required. 2090 2091 Case E-ReceiveZap 2092 2093 •  $E[\text{receive } a] \parallel f b \parallel a(\epsilon) \longleftrightarrow b(\overrightarrow{W}) \longrightarrow \bullet E[\text{raise}] \parallel f a \parallel f b \parallel a(\epsilon) \longleftrightarrow b(\overrightarrow{W})$ 2094 Assumption: 2095 2096  $\frac{\Gamma_{1}, a: S \vdash E[\text{receive } a]: C}{\Gamma_{1}, a: S; \cdot \vdash^{\bullet} \bullet E[\text{receive } a]} \qquad \frac{\overline{b}: T; \cdot \vdash^{\circ} \frac{1}{2} b}{\Gamma_{2}; a: \overline{S}, b: \overline{T} \vdash^{\circ} a(\epsilon) \longleftrightarrow b(\overrightarrow{W})} \\ \frac{\overline{\Gamma}_{2}; a: \overline{S}, b: \overline{T} \vdash^{\circ} a(\epsilon) \longleftrightarrow b(\overrightarrow{W})}{\Gamma_{2}; a: \overline{S}, b: T^{\sharp} \vdash^{\circ} \frac{1}{2} b \parallel a(\epsilon) \longleftrightarrow b(\overrightarrow{W})}$ 2097 2098 2099 2100 2101  $\Gamma_1, \Gamma_2; a: S^{\sharp}, b: T^{\sharp} \vdash^{\bullet} \bullet E[\text{receive } a] \parallel \frac{f}{b} \parallel a(\epsilon) \longleftrightarrow b(\overrightarrow{W})$ 2102 2103 By Lemma C.4:

2104 2105 2106  $a: ?A.S' \vdash a: ?A.S'$  $a: ?A.S' \vdash receive a: (A \times S')$ 

| $\frac{\Gamma_{1} + E[raise] : C}{\Gamma_{1} : \cdot $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                            | r - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ý I                                                                       | e                                                                    |                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| $\frac{\prod_{i} + E[raise] : C}{\prod_{i} : +^{\bullet} \bullet E[raise]} \qquad \frac{1}{a: S_{i} + \frac{1}{2} a} \qquad \frac{1}{\sum_{i} : a: S_{i}^{+} b: T^{i} + \circ} \frac{1}{p_{2} : a: S_{i}^{+} b: T^{i} + \circ} \frac{1}{p_{i}^{+} a \  \frac{1}{2} b \  a(e) \cdots b(\vec{W})}}{\prod_{i} : \Gamma_{2} : a: S^{i} , b: T^{i} + \circ} \frac{1}{p_{i}^{+} a \  \frac{1}{2} b \  a(e) \cdots b(\vec{W})}}{r_{1}, r_{2} : a: S^{i} , b: T^{i} + \circ} \bullet E[raise] \  \frac{1}{2} a \  \frac{1}{2} b \  a(e) \cdots b(\vec{W})}$ as required.<br>Case E-Raise<br>$\bullet E[try P[raise] as x in M otherwise N] \longrightarrow E[N] \  \frac{1}{2} c_{1} \  \cdots \  \frac{1}{2} c_{n}$ and fn(P) = $\{c_{i}\}_{i}$ .<br>Assumption:<br>$\frac{\Gamma + E[try P[raise] as x in M otherwise N] \longrightarrow E[N] \  \frac{1}{2} c_{1} \  \cdots \  \frac{1}{2} c_{n}$ and $\frac{\Gamma_{i}(P) = \{c_{i}\}_{i}}{\Gamma_{i} \cdot \Gamma_{i} \cdot \bullet E[try P[raise] as x in M otherwise N] : A'}{\Gamma_{i} \cdot + \bullet e[try P[raise] as x in M otherwise N]}$ By Lemma C.4, there exist $\Gamma_{1}, \Gamma_{2}, A, B, C$ such that $\Gamma = \Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ and<br>$\frac{\Gamma_{2} + P[raise] : A \qquad \Gamma_{3}, x: B + M: C \qquad \Gamma_{3} + N: C}{\Gamma_{2}, \Gamma_{3} + try P[raise] as x in M otherwise N : C}$ Since $\Gamma$ contains only runtime names and fn(P) = $\{c_{i}\}_{i}$ , we know that $\Gamma_{2} = c_{1} : S_{1}, \ldots, c_{n}$<br>some $S_{i}$ .<br>By Lemma C.5, we have that:<br>$\frac{\Gamma_{1}, \Gamma_{3} + E[N] : C}{\frac{\Gamma_{1}, \Gamma_{3} : + \varepsilon \cdot [N]}{\Gamma_{1}, \Gamma_{3} : \varepsilon \cdot [N]}} \frac{\frac{C_{n-1} : S_{n-1} : + \varepsilon \cdot \frac{1}{2} c_{1}}{C_{n}} \cdots \  \frac{1}{2} c_{n}}{C_{n} : S_{n} : + \varepsilon \cdot \frac{1}{2} c_{1}} \cdots \  \frac{1}{2} c_{n}}$ as required.<br>Case E-RaiseChild<br>$\circ P[raise] \longrightarrow \frac{1}{2} c_{1} \  \cdots \  \frac{1}{2} c_{n}$ Assumption:<br>$\frac{\Gamma + P[raise] : 1}{\Gamma_{1} : + \varepsilon \circ P[raise]} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                           | $\overline{S}/\epsilon = \overline{\overline{T}/\overrightarrow{B}}$ | $\overline{\cdot \vdash \epsilon : \epsilon} \qquad \Gamma_2 \vdash \overline{V}$        |
| $\frac{\prod_{1} + E[raise] : C}{\prod_{1} : +^{\bullet} \bullet E[raise]} \qquad \overline{1_{2} : a : S, b : T^{\sharp} +^{\circ} \frac{1}{2} b \parallel a(e) \cdots b(\overrightarrow{W})}{\Gamma_{2} : a : S^{\sharp}, b : T^{\sharp} +^{\circ} \frac{1}{2} a \parallel \frac{1}{2} b \parallel a(e) \cdots b(\overrightarrow{W})}$ $r_{1}, r_{2} : a : S^{\sharp}, b : T^{\sharp} +^{\bullet} \bullet E[raise] \parallel \frac{1}{2} a \parallel \frac{1}{2} b \parallel a(e) \cdots b(\overrightarrow{W})$ as required.<br>Case E-Raise<br>$\bullet E[try P[raise] as x in M otherwise N] \longrightarrow E[N] \parallel \frac{1}{2} c_{1} \parallel \cdots \parallel \frac{1}{2} c_{n}$ and fn(P) = {c <sub>1</sub> }.<br>Assumption:<br>$\frac{\Gamma + E[try P[raise] as x in M otherwise N] : A'}{\Gamma_{1} \cdot +^{\bullet} \bullet E[try P[raise] as x in M otherwise N]}$ By Lemma C.4, there exist $\Gamma_{1}, \Gamma_{2}, A, B, C$ such that $\Gamma = \Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ and<br>$\frac{\Gamma_{2} + P[raise] : A}{\Gamma_{2}, \Gamma_{3} + try P[raise] as x in M otherwise N : C}$ Since $\Gamma$ contains only runtime names and fn(P) = {c <sub>1</sub> }, we know that $\Gamma_{2} = c_{1} : S_{1}, \ldots, c_{n}$ some $S_{i}$ .<br>By Lemma C.5, we have that:<br>$\frac{\Gamma_{1}, \Gamma_{3} + E[N] : C}{\Gamma_{1}, \Gamma_{3} \cdot e^{\bullet} \bullet E[N]} \frac{\overline{c_{1}} : S_{1} : \cdots \stackrel{\circ}{e} \frac{1}{2} c_{n}}{C_{1} : S_{1} : \cdots \stackrel{\circ}{e} \frac{1}{2} c_{n}} \frac{\overline{c_{n}} : S_{n} : \cdots \stackrel{\circ}{e} \frac{1}{2} c_{n}}{\Gamma_{1}, \Gamma_{3} \cdot e^{\bullet} \bullet \frac{1}{2} c_{n}} \frac{1}{\Gamma_{1}, \Gamma_{3} \cdot e^{\bullet} \frac{1}{2} c_{n}} \frac{1}{\Gamma_{1}, \Gamma_{3} \cdot e^{\bullet} \frac{1}{2} c_{n}} \frac{1}{\Gamma_{1}, \Gamma_{3} \cdot e^{\bullet} \frac{1}{2} c_{n}} \frac{1}{\Gamma_{1} \cdot e^{\bullet$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\overline{b:T;\cdot\vdash^\circ \notin b}$                               | $\Gamma_2; a: \overline{S}$                                          | $, b: \overline{T} \vdash^{\circ} a(\epsilon) \longleftrightarrow b(\overrightarrow{W})$ |
| $\frac{1}{\Gamma_{1}: v^{\perp} \bullet \mathcal{E}[raise]} \xrightarrow{\Gamma_{2}: a : S^{\sharp}, b : T^{\sharp} \vdash \circ \frac{1}{2} a \parallel \frac{1}{2} b \parallel a(e) \leftrightarrow b(\overline{W})}{\Gamma_{1}, \Gamma_{2}: a : S^{\sharp}, b : T^{\sharp} \vdash \bullet \bullet \mathcal{E}[raise] \parallel \frac{1}{2} a \parallel \frac{1}{2} b \parallel a(e) \leftrightarrow b(\overline{W})}$ as required.<br>Case E-Raise<br>$\bullet \mathcal{E}[try P[raise] as x in M otherwise N] \longrightarrow \mathcal{E}[N] \parallel \frac{1}{2} c_{1} \parallel \cdots \parallel \frac{1}{2} c_{n}$ and fn(P) = {c <sub>1</sub> }.<br>Assumption:<br>$\frac{\Gamma \vdash \mathcal{E}[try P[raise] as x in M otherwise N] : A'}{\Gamma_{1}: +^{\bullet} \bullet \mathcal{E}[try P[raise] as x in M otherwise N]}$ By Lemma C.4, there exist $\Gamma_{1}, \Gamma_{2}, A, B, C$ such that $\Gamma = \Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ and<br>$\frac{\Gamma_{2} \vdash P[raise] : A \qquad \Gamma_{3}, x : B \vdash M : C \qquad \Gamma_{3} \vdash N : C}{\Gamma_{2}, \Gamma_{3} \vdash try P[raise] as x in M otherwise N : C}$ Since $\Gamma$ contains only runtime names and fn(P) = {c <sub>1</sub> }, we know that $\Gamma_{2} = c_{1} : S_{1}, \ldots, c_{n}$ some $S_{i}$ .<br>By Lemma C.5, we have that:<br>$\frac{\Gamma_{1}, \Gamma_{3} \vdash \mathcal{E}[N] : C}{\Gamma_{1}, \Gamma_{3}: + \bullet \bullet \mathcal{E}[N]} \frac{c_{1}: S_{1}: \cdots \stackrel{\circ}{\to} \frac{c_{1}}{c_{1}} : S_{n-1}: \stackrel{\circ}{\to} \frac{c_{n}}{c_{1}} : S_{n}: \stackrel{\circ}{\to} \frac{c_{n}}{c_{1}} : S_{n}: \stackrel{\circ}{\to} \frac{c_{n}}{c_{1}} : \cdots \parallel \frac{c_{n}}{c_{n}}$ as required.<br>Case E-RaiseChild<br>$\circ P[raise] \longrightarrow \frac{c_{1}}{c_{1}} : \cdots \parallel \frac{c_{n}}{c_{n}}$ Assumption:<br>$\frac{\Gamma \vdash P[raise] : 1}{\Gamma_{1}: +^{\circ} \circ P[raise]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\Gamma_1 \vdash E[raise] : C$                                                             | $\overline{a:S;\cdot \vdash 4a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Γ2                                                                        | $;a:\overline{S},b:T^{\sharp}\vdash^{\circ} \pounds b$               | $b \parallel a(\epsilon) \longleftrightarrow b(\overrightarrow{W})$                      |
| $\begin{split} \hline \Gamma_{1}, \Gamma_{2}; a: S^{\sharp}, b: T^{\sharp} \models^{\bullet} \bullet E[raise] \parallel \frac{1}{2} a \parallel \frac{1}{2} b \parallel a(\varepsilon) \mapsto b(W) \\ \text{as required.} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{\Gamma_1 \cdot E[\text{raise}] \cdot e}{\Gamma_1; \cdot e} \bullet E[\text{raise}]$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\Gamma_2; a: S^{\sharp}, b: T$                                           | $^{\#} \vdash^{\circ} 4a \parallel 4b \parallel a($                  | $\epsilon$ ) $\leftrightarrow b(\vec{W})$                                                |
| as required.<br>Case E-Raise<br>• $E[\text{try } P[\text{raise}] \text{ as } x \text{ in } M \text{ otherwise } N] \longrightarrow E[N] \parallel \frac{1}{2}c_1 \parallel \cdots \parallel \frac{1}{2}c_n$<br>and $fn(P) = \{c_i\}_i$ .<br>Assumption:<br>$\frac{\Gamma + E[\text{try } P[\text{raise}] \text{ as } x \text{ in } M \text{ otherwise } N] : A'}{\Gamma; \cdot +^{\bullet} \cdot e[[\text{try } P[\text{raise}] \text{ as } x \text{ in } M \text{ otherwise } N]}$ By Lemma C.4, there exist $\Gamma_1, \Gamma_2, A, B, C$ such that $\Gamma = \Gamma_1, \Gamma_2, \Gamma_3$ and<br>$\frac{\Gamma_2 + P[\text{raise}] : A  \Gamma_3, x : B + M : C  \Gamma_3 + N : C}{\Gamma_2, \Gamma_3 + \text{try } P[\text{raise}] \text{ as } x \text{ in } M \text{ otherwise } N : C}$ Since $\Gamma$ contains only runtime names and $fn(P) = \{c_i\}_i$ , we know that $\Gamma_2 = c_1 : S_1, \dots, c_n$<br>some $S_i$ .<br>By Lemma C.5, we have that:<br>$\overline{\Gamma_1, \Gamma_3 + E[N] : C} \qquad \overline{\frac{c_1 : S_1 : +^{\circ} \frac{1}{2}c_1}{c_1 : S_1, \dots, c_n : S_n : +^{\circ} \frac{1}{2}c_n - 1}}  \overline{c_n : S_n : +^{\circ} \frac{1}{2}c_n}$ As required.<br>Case E-RaiseChild<br>$\circ P[\text{raise}] \longrightarrow \frac{1}{2}c_1 \parallel \cdots \parallel \frac{1}{2}c_n$<br>Assumption:<br>$\frac{\Gamma + P[\text{raise}] : 1}{\Gamma_i : +^{\circ} \circ P[\text{raise}]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                            | $\Gamma_1, \Gamma_2; a: S^{\sharp}, b:$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $T^{\sharp} \vdash^{\bullet} \bullet E[raise]$                            | $\  \frac{1}{2}a \  \frac{1}{2}b \  a(\epsilon) \leftrightarrow$     | $\rightarrow b(\overrightarrow{W})$                                                      |
| Case E-Raise<br>• $E[\text{try } P[\text{raise}] \text{ as } x \text{ in } M \text{ otherwise } N] \longrightarrow E[N] \parallel \frac{1}{2}c_1 \parallel \cdots \parallel \frac{1}{2}c_n$<br>and $fn(P) = \{c_i\}_i$ .<br>Assumption:<br>$\frac{\Gamma + E[\text{try } P[\text{raise}] \text{ as } x \text{ in } M \text{ otherwise } N] : A'}{\Gamma_{1} \cdot +^{\bullet} \cdot e[\text{try } P[\text{raise}] \text{ as } x \text{ in } M \text{ otherwise } N]}$ By Lemma C.4, there exist $\Gamma_{1}, \Gamma_{2}, A, B, C$ such that $\Gamma = \Gamma_{1}, \Gamma_{2}, \Gamma_{3} \text{ and}$<br>$\frac{\Gamma_{2} + P[\text{raise}] : A}{\Gamma_{2}, \Gamma_{3} + \text{try } P[\text{raise}] \text{ as } x \text{ in } M \text{ otherwise } N : C}$ Since $\Gamma$ contains only runtime names and $fn(P) = \{c_i\}_i$ , we know that $\Gamma_{2} = c_1 : S_1, \dots, c_n$<br>some $S_i$ .<br>By Lemma C.5, we have that:<br>$\overline{\Gamma_{1}, \Gamma_{3} + E[N] : A'}$ By repeated applications of T-ZAP and T-M1x, we have that $\Gamma_{2} + \frac{1}{2}c_1 \parallel \cdots \parallel \frac{1}{2}c_n$ .<br>Therefore, recomposing:<br>$\frac{\overline{c_{n-1} : S_{n-1} : \cdot +^{\circ} \frac{1}{2}c_1}{C_1 : S_1 : \cdot +^{\circ} \frac{1}{2}c_1} = \frac{\overline{c_n : S_n : \cdot +^{\circ} \frac{1}{2}c_n}{C_1 : S_1 \dots , c_n : S_n : \cdot +^{\circ} \frac{1}{2}c_1} = \overline{c_n : S_n : \cdot +^{\circ} \frac{1}{2}c_n}$ as required.<br>Case E-RaiseChild<br>$\circ P[\text{raise}] \longrightarrow \frac{1}{2}c_1 \parallel \cdots \parallel \frac{1}{2}c_n$ Assumption:<br>$\frac{\Gamma + P[\text{raise}] : 1}{\Gamma_{1} \cdot +^{\circ} \circ P[\text{raise}]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | as required.                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                           |                                                                      |                                                                                          |
| •E[try P[raise] as x in M otherwise N] $\rightarrow E[N] \parallel \frac{1}{2}c_1 \parallel \cdots \parallel \frac{1}{2}c_n$<br>and fn(P) = { $c_i$ }.<br>Assumption:<br>$\frac{\Gamma + E[try P[raise] as x in M otherwise N] : A'}{\Gamma_1 \cdot \cdot \cdot \bullet \bullet E[try P[raise] as x in M otherwise N]}$ By Lemma C.4, there exist $\Gamma_1, \Gamma_2, A, B, C$ such that $\Gamma = \Gamma_1, \Gamma_2, \Gamma_3$ and<br>$\frac{\Gamma_2 + P[raise] : A  \Gamma_3, x : B + M : C  \Gamma_3 + N : C}{\Gamma_2, \Gamma_3 + try P[raise] as x in M otherwise N : C}$ Since $\Gamma$ contains only runtime names and fn(P) = { $c_i$ }, we know that $\Gamma_2 = c_1 : S_1, \dots, c_n$<br>some $S_i$ .<br>By Lemma C.5, we have that:<br>$\frac{\Gamma_1, \Gamma_3 + E[N] : C}{\Gamma_1, \Gamma_3 : \cdot \bullet \bullet E[N]} = \frac{c_1 : S_1 : \cdot \cdot \bullet \cdot \frac{1}{2}c_1}{c_1 : S_1 : \cdot \cdot \bullet \cdot \frac{1}{2}c_1} = \frac{c_1 : S_n : \cdot \cdot \bullet \cdot \frac{1}{2}c_n}{c_n : S_n : \cdot \bullet \bullet \frac{1}{2}c_n}$ as required.<br>Case E-RaiseChild<br>$\circ P[raise] \rightarrow \frac{1}{2}c_1 \parallel \cdots \parallel \frac{1}{2}c_n$<br>$\frac{\Gamma + P[raise] : 1}{\Gamma_1 : \cdot \bullet \circ oP[raise]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Casa E Daisa                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                           |                                                                      |                                                                                          |
| • $E[\text{try } P[\text{raise}] \text{ as } x \text{ in } M \text{ otherwise } N] \longrightarrow E[N] \parallel \frac{1}{2}c_1 \parallel \cdots \parallel \frac{1}{2}c_n$<br>and $fn(P) = \{c_i\}_i$ .<br>Assumption:<br>$\frac{\Gamma + E[\text{try } P[\text{raise}] \text{ as } x \text{ in } M \text{ otherwise } N] : A'}{\Gamma; \cdot \cdot^{\circ} \cdot e[\text{try } P[\text{raise}] \text{ as } x \text{ in } M \text{ otherwise } N]}$ By Lemma C.4, there exist $\Gamma_1, \Gamma_2, A, B, C$ such that $\Gamma = \Gamma_1, \Gamma_2, \Gamma_3$ and<br>$\frac{\Gamma_2 + P[\text{raise}] : A  \Gamma_3, x : B + M : C  \Gamma_3 + N : C}{\Gamma_2, \Gamma_3 + \text{try } P[\text{raise}] \text{ as } x \text{ in } M \text{ otherwise } N : C}$ Since $\Gamma$ contains only runtime names and $fn(P) = \{c_i\}_i$ , we know that $\Gamma_2 = c_1 : S_1, \dots, c_i$<br>some $S_i$ .<br>By Lemma C.5, we have that:<br>$\overline{\Gamma_1, \Gamma_3 + E[N] : A'}$ By repeated applications of T-ZAP and T-MIX, we have that $\Gamma_2 + \frac{1}{2}c_1 \parallel \cdots \parallel \frac{1}{2}c_n$ .<br>Therefore, recomposing:<br>$\frac{\overline{\Gamma_1, \Gamma_3 + E[N] : C}{\Gamma_1, \Gamma_3, \cdot \cdot \bullet \bullet E[N]} \frac{\overline{c_1 : S_1; \cdot \cdot \bullet \circ \frac{1}{2}c_1}{c_1 : S_1, \dots, c_n : S_n; \cdot \cdot \bullet \circ \frac{1}{2}c_1} \frac{\overline{c_n : S_n; \cdot \cdot \circ \frac{1}{2}c_n}}{c_n : S_n; \cdot \cdot \circ \frac{1}{2}c_n}$ as required.<br>Case E-RaiseChild<br>$\circ P[\text{raise}] \longrightarrow \frac{1}{2}c_1 \parallel \cdots \parallel \frac{1}{2}c_n$ Assumption:<br>$\frac{\Gamma + P[\text{raise}] : 1}{\Gamma_i \cdot \cdot \circ \circ P[\text{raise}]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Case L-Maise                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                           |                                                                      |                                                                                          |
| and $fn(P) = \{c_i\}_i$ .<br>Assumption:<br>$\frac{\Gamma \vdash E[try P[raise] \text{ as } x \text{ in } M \text{ otherwise } N] : A'}{\Gamma; \cdot +^{\circ} \bullet E[try P[raise] \text{ as } x \text{ in } M \text{ otherwise } N]}$ By Lemma C.4, there exist $\Gamma_1, \Gamma_2, A, B, C$ such that $\Gamma = \Gamma_1, \Gamma_2, \Gamma_3$ and<br>$\frac{\Gamma_2 \vdash P[raise] : A  \Gamma_3, x : B \vdash M : C  \Gamma_3 \vdash N : C}{\Gamma_2, \Gamma_3 \vdash try P[raise] \text{ as } x \text{ in } M \text{ otherwise } N : C}$ Since $\Gamma$ contains only runtime names and $fn(P) = \{c_i\}_i$ , we know that $\Gamma_2 = c_1 : S_1, \dots, c_i$<br>some $S_i$ .<br>By Lemma C.5, we have that:<br>$\overline{\Gamma_1, \Gamma_3 \vdash E[N] : A'}$ By repeated applications of T-ZAP and T-Mix, we have that $\Gamma_2 \vdash \oint c_1 \parallel \cdots \parallel \oint c_n$ .<br>Therefore, recomposing:<br>$\frac{\overline{\Gamma_1, \Gamma_3 \vdash E[N] : C}{\overline{\Gamma_1, \Gamma_3: \vdash^{\circ} \bullet E[N]}} = \overline{c_1 : S_1, \dots, c_n : S_n: \vdash^{\circ} \oint c_1} = \overline{c_n : S_n: \vdash^{\circ} \oint c_n}$ as required.<br>Case E-RaiseChild<br>$\circ P[raise] \longrightarrow \oint c_1 \parallel \cdots \parallel \oint c_n$ Assumption:<br>$\frac{\Gamma \vdash P[raise] : 1}{\Gamma_i \colon^{\circ} \circ P[raise]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ● <i>E</i> [try                                                                            | <i>P</i> [raise] as <i>x</i> in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M otherwise                                                               | $N] \longrightarrow E[N] \parallel \varsigma$                        | $\not c_1 \parallel \cdots \parallel \not c_n$                                           |
| Assumption:<br>$\frac{\Gamma \vdash E[\operatorname{try} P[\operatorname{raise}] \text{ as } x \text{ in } M \text{ otherwise } N] : A'}{\Gamma_{1} \cdot +^{\bullet} \bullet E[\operatorname{try} P[\operatorname{raise}] \text{ as } x \text{ in } M \text{ otherwise } N]}$ By Lemma C.4, there exist $\Gamma_{1}, \Gamma_{2}, A, B, C$ such that $\Gamma = \Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ and<br>$\frac{\Gamma_{2} \vdash P[\operatorname{raise}] : A}{\Gamma_{2}, \Gamma_{3} \vdash \operatorname{try} P[\operatorname{raise}] \text{ as } x \text{ in } M \text{ otherwise } N : C}{\Gamma_{2}, \Gamma_{3} \vdash \operatorname{try} P[\operatorname{raise}] \text{ as } x \text{ in } M \text{ otherwise } N : C}$ Since $\Gamma$ contains only runtime names and $fn(P) = \{c_{i}\}_{i}$ , we know that $\Gamma_{2} = c_{1} : S_{1}, \ldots, c_{0}$ one $S_{i}$ .<br>By Lemma C.5, we have that:<br>$\overline{\Gamma_{1}, \Gamma_{3} \vdash E[N] : A'}$ By repeated applications of T-ZAP and T-Mix, we have that $\Gamma_{2} \vdash \frac{1}{2}c_{1} \parallel \cdots \parallel \frac{1}{2}c_{n}$ .<br>Therefore, recomposing:<br>$\frac{\overline{c_{n-1} : S_{n-1} : \vdash^{\circ} \frac{1}{2}c_{n}}{c_{1} : S_{1} : \vdash^{\circ} \frac{1}{2}c_{1}} = \frac{\overline{c_{n} : S_{n} : \vdash^{\circ} \frac{1}{2}c_{n}}{c_{n} : S_{n} : \vdash^{\circ} \frac{1}{2}c_{n}} = \frac{\overline{c_{n} : S_{n} : \vdash^{\circ} \frac{1}{2}c_{n}}{c_{n} : S_{n} : \vdash^{\circ} \frac{1}{2}c_{n}}$ as required.<br>Case E-RaiseChild<br>$\circ P[\operatorname{raise}] : 1$ $\frac{\Gamma \vdash P[\operatorname{raise}] : 1}{\Gamma_{1} : \vdash^{\circ} \circ P[\operatorname{raise}]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and $\operatorname{fn}(P) = \{c_i\}_i$ .                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                           |                                                                      |                                                                                          |
| $\frac{\Gamma + E[\operatorname{try} P[\operatorname{raise}] \text{ as } x \text{ in } M \text{ otherwise } N] : A'}{\Gamma_{5} \cdot +^{\bullet} \cdot e[\operatorname{try} P[\operatorname{raise}] \text{ as } x \text{ in } M \text{ otherwise } N]}$ By Lemma C.4, there exist $\Gamma_{1}, \Gamma_{2}, A, B, C$ such that $\Gamma = \Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ and $\frac{\Gamma_{2} + P[\operatorname{raise}] : A \qquad \Gamma_{3}, x : B + M : C \qquad \Gamma_{3} + N : C}{\Gamma_{2}, \Gamma_{3} + \operatorname{try} P[\operatorname{raise}] \text{ as } x \text{ in } M \text{ otherwise } N : C}$ Since $\Gamma$ contains only runtime names and $\operatorname{fn}(P) = \{c_{i}\}_{i}$ , we know that $\Gamma_{2} = c_{1} : S_{1}, \dots, c_{n}$ some $S_{i}$ . By Lemma C.5, we have that: $\overline{\Gamma_{1}, \Gamma_{3} + E[N] : A'}$ By repeated applications of T-ZAP and T-Mix, we have that $\Gamma_{2} + \frac{1}{2}c_{1} \parallel \dots \parallel \frac{1}{2}c_{n}$ . Therefore, recomposing: $\frac{\overline{\Gamma_{1}, \Gamma_{3} + E[N] : C}{\Gamma_{1}, \Gamma_{3} : +^{\bullet} \cdot E[N]} = \frac{\overline{c_{1} : S_{1} : +^{\circ} \frac{1}{2}c_{1}}{c_{1} : S_{1} : \dots , c_{n} : S_{n} : +^{\circ} \frac{1}{2}c_{1} \parallel \dots \parallel \frac{1}{2}c_{n}}$ as required. Case E-RaiseChild $\circ P[\operatorname{raise}] : 1$ $\frac{\Gamma + P[\operatorname{raise}] : 1}{\Gamma_{5} : +^{\circ} \circ P[\operatorname{raise}]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Assumption:                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                           |                                                                      |                                                                                          |
| $\frac{\Gamma_{1} + \Gamma_{2} + e^{-p} [raise] \text{ as } x \text{ in } M \text{ otherwise } N]}{\Gamma_{1} + e^{-p} e^{-p} [raise] \text{ as } x \text{ in } M \text{ otherwise } N]}$ By Lemma C.4, there exist $\Gamma_{1}, \Gamma_{2}, A, B, C$ such that $\Gamma = \Gamma_{1}, \Gamma_{2}, \Gamma_{3} \text{ and}$ $\frac{\Gamma_{2} + P[raise] : A  \Gamma_{3}, x : B + M : C  \Gamma_{3} + N : C}{\Gamma_{2}, \Gamma_{3} + \mathbf{try } P[raise] \text{ as } x \text{ in } M \text{ otherwise } N : C}$ Since $\Gamma$ contains only runtime names and $fn(P) = \{c_{i}\}_{i}$ , we know that $\Gamma_{2} = c_{1} : S_{1}, \dots, c_{n}$ some $S_{i}$ . By Lemma C.5, we have that: $\overline{\Gamma_{1}, \Gamma_{3} + E[N] : A'}$ By repeated applications of T-ZAP and T-Mix, we have that $\Gamma_{2} + \frac{1}{2}c_{1} \parallel \cdots \parallel \frac{1}{2}c_{n}$ . Therefore, recomposing: $\frac{\Gamma_{1}, \Gamma_{3} + E[N] : C}{\Gamma_{1}, \Gamma_{3} : e^{-\Phi} \cdot eE[N]} = \frac{c_{1} : S_{1} : e^{-\frac{1}{2}} \frac{c_{1}}{c_{1}} : S_{1} : \cdots, c_{n} : S_{n} : e^{-\frac{1}{2}} \frac{c_{n}}{c_{n}} = \frac{c_{n}}{c_{n}} : S_{n} : e^{-\frac{1}{2}} \frac{c_{n}}{c_{n}}$ as required. Case E-RaiseChild $\circ P[raise] \longrightarrow \frac{1}{2}c_{1} \parallel \cdots \parallel \frac{1}{2}c_{n}$ Assumption: $\frac{\Gamma + P[raise] : 1}{\Gamma_{1} : e^{-\Phi} \circ P[raise]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                            | $\Gamma \vdash E[\mathbf{trv} P]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | raise] as x in A                                                          | ∕ otherwise <i>N</i> ]                                               | : <i>A</i> ′                                                                             |
| By Lemma C.4, there exist $\Gamma_1, \Gamma_2, A, B, C$ such that $\Gamma = \Gamma_1, \Gamma_2, \Gamma_3$ and<br>$\frac{\Gamma_2 + P[raise] : A}{\Gamma_2, \Gamma_3 + try P[raise] as x in M otherwise N : C}$ Since $\Gamma$ contains only runtime names and $fn(P) = \{c_i\}_i$ , we know that $\Gamma_2 = c_1 : S_1, \dots, c_n$<br>some $S_i$ .<br>By Lemma C.5, we have that:<br>$\overline{\Gamma_1, \Gamma_3 + E[N] : A'}$ By repeated applications of T-ZAP and T-MIX, we have that $\Gamma_2 + \frac{1}{2}c_1 \parallel \dots \parallel \frac{1}{2}c_n$ .<br>Therefore, recomposing:<br>$\frac{\Gamma_1, \Gamma_3 + E[N] : C}{\Gamma_1, \Gamma_3; \cdot + \bullet \bullet E[N]} = \frac{\overline{c_1 : S_1; \cdot + \bullet \frac{1}{2}c_1}}{c_1 : S_1, \dots, c_n : S_n; \cdot + \bullet \frac{1}{2}c_n} = \overline{c_n : S_n; \cdot + \bullet \frac{1}{2}c_n}$ as required.<br>Case E-RaiseChild<br>$\circ P[raise] \longrightarrow \frac{1}{2}c_1 \parallel \dots \parallel \frac{1}{2}c_n$ Assumption:<br>$\frac{\Gamma + P[raise] : 1}{\Gamma_1; \cdot + \bullet \circ P[raise]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                            | $\frac{1}{\Gamma:\cdot \vdash^{\bullet} \bullet E[tr]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\mathbf{v}$ <i>P</i> [ <b>raise</b> ] as <i>x</i>                        | in <i>M</i> otherwise                                                | $\frac{N}{N}$                                                                            |
| By Lemma C.4, there exist $r_1, r_2, r_3, r_5 \in \text{such that } r = r_1, r_2, r_3$ and<br>$\frac{\Gamma_2 + P[\text{raise}] : A}{\Gamma_2, \Gamma_3 + \text{try } P[\text{raise}] \text{ as } x \text{ in } M \text{ otherwise } N : C}$ Since $\Gamma$ contains only runtime names and $\text{fn}(P) = \{c_i\}_i$ , we know that $\Gamma_2 = c_1 : S_1, \dots, c_n$<br>some $S_i$ .<br>By Lemma C.5, we have that:<br>$\overline{\Gamma_1, \Gamma_3 + E[N] : A'}$ By repeated applications of T-ZAP and T-MIX, we have that $\Gamma_2 + \frac{1}{2}c_1 \parallel \dots \parallel \frac{1}{2}c_n$ .<br>Therefore, recomposing:<br>$\frac{\Gamma_1, \Gamma_3 + E[N] : C}{\Gamma_1, \Gamma_3; \cdot + \bullet \bullet E[N]} = \frac{\overline{c_1 : S_1; \cdot + \circ \frac{1}{2}c_1}}{c_1 : S_1, \dots, c_n : S_n; \cdot + \circ \frac{1}{2}c_n} = \frac{\overline{c_n : S_n; \cdot + \circ \frac{1}{2}c_n}}{c_1 : S_1, \dots, c_n : S_n; \cdot + \circ \frac{1}{2}c_n}$ as required.<br>Case E-RaiseChild<br>$\circ P[\text{raise}] \longrightarrow \frac{1}{2}c_1 \parallel \dots \parallel \frac{1}{2}c_n$ Assumption:<br>$\frac{\Gamma + P[\text{raise}] : 1}{\Gamma_1; \cdot + \circ \circ P[\text{raise}]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | By Lommo C 1 the                                                                           | $r_{0} = \frac{1}{2} \frac{1}$ | B C such that                                                             | $\Gamma = \Gamma \Gamma \Gamma$ and                                  | · ]                                                                                      |
| $\frac{\Gamma_2 \vdash P[\mathbf{raise}] : A}{\Gamma_2, \Gamma_3 \vdash \mathbf{try} P[\mathbf{raise}] \mathbf{as} x \mathbf{in} M \mathbf{otherwise} N : C}$ Since $\Gamma$ contains only runtime names and $fn(P) = \{c_i\}_i$ , we know that $\Gamma_2 = c_1 : S_1, \dots, c_n$<br>some $S_i$ .<br>By Lemma C.5, we have that:<br>$\overline{\Gamma_1, \Gamma_3 \vdash E[N] : A'}$ By repeated applications of T-ZAP and T-MIX, we have that $\Gamma_2 \vdash \oint c_1 \parallel \cdots \parallel \oint c_n$ .<br>Therefore, recomposing:<br>$\frac{\overline{\Gamma_1, \Gamma_3 \vdash E[N] : C}}{[\Gamma_1, \Gamma_3; \vdash^{\bullet} \bullet E[N]} = \overline{c_1 : S_1; \vdash^{\bullet} \oint c_1} = \overline{c_1 : S_n; \vdash^{\bullet} \oint c_1 \parallel \cdots \parallel \oint c_n} = \overline{c_n : S_n; \vdash^{\bullet} \oint c_1 \parallel \cdots \parallel \oint c_n}$ as required.<br>Case E-RaiseChild<br>$\circ P[\mathbf{raise}] \longrightarrow \oint c_1 \parallel \cdots \parallel \oint c_n$ Assumption:<br>$\frac{\Gamma \vdash P[\mathbf{raise}] : 1}{\Gamma_1; \vdash^{\bullet} \circ P[\mathbf{raise}]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dy Lemma C.4, me.                                                                          | $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                           | $1 = 1_1, 1_2, 1_3$ and                                              |                                                                                          |
| $\Gamma_{2}, \Gamma_{3} \leftarrow try \ P[raise] \text{ as } x \text{ in } M \text{ otherwise } N : C$ Since $\Gamma$ contains only runtime names and $fn(P) = \{c_{i}\}_{i}$ , we know that $\Gamma_{2} = c_{1} : S_{1}, \dots, c_{n}$<br>some $S_{i}$ .<br>By Lemma C.5, we have that:<br>$\overline{\Gamma_{1}, \Gamma_{3} \leftarrow E[N] : A'}$ By repeated applications of T-ZAP and T-MIX, we have that $\Gamma_{2} \leftarrow \frac{1}{2} \leftarrow \frac{1}{2} + \frac{1}{2} c_{1} \parallel \cdots \parallel \frac{1}{2} c_{n}$ .<br>Therefore, recomposing:<br>$\frac{\Gamma_{1}, \Gamma_{3} \leftarrow E[N] : C}{\Gamma_{1}, \Gamma_{3}; \cdot \vdash^{\bullet} \bullet E[N]} = \frac{c_{1} : S_{1}; \cdot \vdash^{\circ} \frac{1}{2} c_{1}}{c_{1} : S_{1}, \dots, c_{n} : S_{n}; \cdot \vdash^{\circ} \frac{1}{2} c_{1} \parallel \cdots \parallel \frac{1}{2} c_{n}}$ as required.<br>Case E-RaiseChild<br>$\circ P[raise] \longrightarrow \frac{1}{2} c_{1} \parallel \cdots \parallel \frac{1}{2} c_{n}$ Assumption:<br>$\frac{\Gamma \vdash P[raise] : 1}{\Gamma_{i}; \cdot \vdash^{\circ} \circ P[raise]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            | $\Gamma_2 \vdash P[raise]:$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} A \\ 1_3, x : B \end{array}$                            | $\vdash M:C$ $\Gamma_3 \vdash$                                       | N:C                                                                                      |
| Since $\Gamma$ contains only runtime names and $fn(P) = \{c_i\}_i$ , we know that $\Gamma_2 = c_1 : S_1, \dots, c_n$<br>some $S_i$ .<br>By Lemma C.5, we have that:<br>$\overline{\Gamma_1, \Gamma_3 \vdash E[N] : A'}$ By repeated applications of T-ZAP and T-MIX, we have that $\Gamma_2 \vdash \frac{1}{2}c_1 \parallel \dots \parallel \frac{1}{2}c_n$ .<br>Therefore, recomposing:<br>$\frac{\Gamma_1, \Gamma_3 \vdash E[N] : C}{\Gamma_1, \Gamma_3 : \vdash^{\bullet} \bullet E[N]} = \frac{\overline{c_1 : S_1; \vdash^{\bullet} \frac{1}{2}c_1}}{c_1 : S_1, \dots, c_n : S_n; \vdash^{\bullet} \frac{1}{2}c_1 \parallel \dots \parallel \frac{1}{2}c_n}$ as required.<br>Case E-RaiseChild<br>$\circ P[\mathbf{raise}] \longrightarrow \frac{1}{2}c_1 \parallel \dots \parallel \frac{1}{2}c_n$ Assumption:<br>$\frac{\Gamma \vdash P[\mathbf{raise}] : 1}{\Gamma_1; \vdash^{\bullet} \circ P[\mathbf{raise}]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                            | $\Gamma_2, \Gamma_3 \vdash \mathbf{try} P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | '[raise] as x in                                                          | M otherwise N                                                        | I:C                                                                                      |
| some $S_i$ .<br>By Lemma C.5, we have that:<br>$\overline{\Gamma_1, \Gamma_3 + E[N] : A'}$ By repeated applications of T-ZAP and T-MIX, we have that $\Gamma_2 + \frac{1}{2}c_1 \parallel \cdots \parallel \frac{1}{2}c_n$ .<br>Therefore, recomposing:<br>$\frac{\overline{\Gamma_1, \Gamma_3 + E[N] : C}}{\overline{\Gamma_1, \Gamma_3; \cdot \vdash^{\bullet} \bullet E[N]}} \xrightarrow{\overline{c_1 : S_1; \cdot \vdash^{\circ} \frac{1}{2}c_1}} \frac{\overline{c_{n-1} : S_{n-1}; \cdot \vdash^{\circ} \frac{1}{2}c_n}}{c_1 : S_1, \dots, c_n : S_n; \cdot \vdash^{\circ} \frac{1}{2}c_1 \parallel \cdots \parallel \frac{1}{2}c_n}$ as required.<br>Case E-RaiseChild<br>$\circ P[\mathbf{raise}] \longrightarrow \frac{1}{2}c_1 \parallel \cdots \parallel \frac{1}{2}c_n$ Assumption:<br>$\frac{\Gamma \vdash P[\mathbf{raise}] : 1}{\Gamma_i; \cdot \vdash^{\circ} \circ P[\mathbf{raise}]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Since $\Gamma$ contains only                                                               | runtime names                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s and $fn(P) = \{$                                                        | $\{c_i\}_i$ , we know th                                             | $\operatorname{tat} \Gamma_2 = c_1 : S_1, \ldots, c_n$                                   |
| By Lemma C.3, we have that:<br>$\overline{\Gamma_{1}, \Gamma_{3} + E[N] : A'}$ By repeated applications of T-ZAP and T-MIX, we have that $\Gamma_{2} \vdash \frac{1}{2}c_{1} \parallel \cdots \parallel \frac{1}{2}c_{n}$ .<br>Therefore, recomposing:<br>$\underline{\frac{\Gamma_{1}, \Gamma_{3} + E[N] : C}{\Gamma_{1}, \Gamma_{3}; \cdot +^{\bullet} \bullet E[N]}} \underbrace{\frac{\overline{c_{1} : S_{1}; \cdot +^{\circ} \frac{1}{2}c_{1}}{c_{1} : S_{1}, \dots, c_{n} : S_{n}; \cdot +^{\circ} \frac{1}{2}c_{1} \parallel \cdots \parallel \frac{1}{2}c_{n}}_{i : S_{1}, \dots, c_{n} : S_{n}; \cdot +^{\circ} \bullet E[N] \parallel \frac{1}{2}c_{1} \parallel \cdots \parallel \frac{1}{2}c_{n}}$ as required.<br>Case E-RaiseChild<br>$\circ P[\mathbf{raise}] \longrightarrow \frac{1}{2}c_{1} \parallel \cdots \parallel \frac{1}{2}c_{n}$ Assumption:<br>$\frac{\Gamma \vdash P[\mathbf{raise}] : 1}{\Gamma_{1}; \cdot +^{\circ} \circ P[\mathbf{raise}]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | some $S_i$ .                                                                               | have that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                           |                                                                      |                                                                                          |
| $\overline{\Gamma_{1},\Gamma_{3} + E[N] : A'}$ By repeated applications of T-ZAP and T-Mrx, we have that $\Gamma_{2} \vdash \frac{1}{2}c_{1} \parallel \cdots \parallel \frac{1}{2}c_{n}$ .<br>Therefore, recomposing:<br>$\frac{\overline{c_{n-1} : S_{n-1} : \vdash^{\circ} \frac{1}{2}c_{n-1}}{\overline{c_{n} : S_{n} : \vdash^{\circ} \frac{1}{2}c_{n}}} = \overline{c_{n} : S_{n} : \vdash^{\circ} \frac{1}{2}c_{n}}$ $\frac{\overline{c_{1} : S_{1} : \vdash^{\circ} \frac{1}{2}c_{1}}}{\Gamma_{1},\Gamma_{3} : \vdash^{\circ} \bullet E[N]} = \overline{c_{1} : S_{1} : \cdots , c_{n} : S_{n} : \vdash^{\circ} \frac{1}{2}c_{1}} = \overline{c_{n}}$ as required.<br>Case E-RaiseChild<br>$\circ P[\mathbf{raise}] \longrightarrow \frac{1}{2}c_{1} \parallel \cdots \parallel \frac{1}{2}c_{n}$ Assumption:<br>$\frac{\Gamma \vdash P[\mathbf{raise}] : 1}{\Gamma_{1} : \vdash^{\circ} \circ P[\mathbf{raise}]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | By Lemma C.5, we                                                                           | nave that:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                           |                                                                      |                                                                                          |
| By repeated applications of T-ZAP and T-MIX, we have that $\Gamma_2 \vdash \frac{1}{2}c_1 \parallel \cdots \parallel \frac{1}{2}c_n$ .<br>Therefore, recomposing:<br>$\frac{\overline{c_{n-1}:S_{n-1}:\vdash^{\circ}\frac{1}{2}c_{n-1}}}{[\Gamma_1,\Gamma_3:\vdash^{\bullet}\bullet E[N]} \xrightarrow{\overline{c_1:S_1:\vdash^{\circ}\frac{1}{2}c_1}}{[\Gamma_1,\Gamma_3,c_1:S_1,\ldots,c_n:S_n:\vdash^{\bullet}\frac{1}{2}c_1 \parallel \cdots \parallel \frac{1}{2}c_n}$ is required.<br>Case E-RaiseChild<br>$\circ P[\mathbf{raise}] \longrightarrow \frac{1}{2}c_1 \parallel \cdots \parallel \frac{1}{2}c_n$<br>Assumption:<br>$\frac{\Gamma \vdash P[\mathbf{raise}]:1}{[\Gamma_1:\vdash^{\circ}\circ P[\mathbf{raise}]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\overline{\Gamma_1,\Gamma_3} \vdash E[N]$                                | ]:A'                                                                 |                                                                                          |
| Therefore, recomposing:<br>$ \frac{\Gamma_{1}, \Gamma_{3} \vdash E[N] : C}{\Gamma_{1}, \Gamma_{3}; \cdot \vdash^{\bullet} \bullet E[N]} \xrightarrow{\overline{c_{1}:S_{1}; \cdot \vdash^{\circ} \notin c_{1}}} \xrightarrow{\overline{c_{n-1}:S_{n-1}; \cdot \vdash^{\circ} \notin c_{n-1}}} \xrightarrow{\overline{c_{n}:S_{n}; \cdot \vdash^{\circ} \notin c_{n}}} \xrightarrow{\overline{c_{n}:S_{n}; \cdot \vdash^{\circ} \# c_{n}}} \xrightarrow{\overline{c_{n}:S_{n}: \cdot \vdash^{\circ} \# c_{n}}} \xrightarrow{\overline{c_{n}:S_{n}:S_{n}: \cdot \vdash^{\circ}$ | By repeated application                                                                    | ations of T-ZAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and T-MIX, we                                                             | have that $\Gamma_2 \vdash f$                                        | $c_1 \parallel \cdots \parallel 4 c_n.$                                                  |
| $ \frac{\Gamma_{1},\Gamma_{3} \vdash E[N]:C}{\Gamma_{1},\Gamma_{3}:+^{\bullet} \bullet E[N]} \xrightarrow{\overline{c_{1}:S_{1}:+^{\circ} \notin c_{1}}} \xrightarrow{\overline{c_{1}:S_{n-1}:+^{\circ} \# c_{n-1}}} \xrightarrow{\overline{c_{n}:S_{n}:+^{\circ} \# c_{n}}} \\ \frac{\overline{c_{1}:S_{1},\ldots,c_{n}:S_{n}:+^{\circ} \# c_{1} \parallel \cdots \parallel \# c_{n}}}{\Gamma_{1},\Gamma_{3},c_{1}:S_{1},\ldots,c_{n}:S_{n}:+^{\bullet} \bullet E[N] \parallel \# c_{1} \parallel \cdots \parallel \# c_{n}} $ as required. Case E-RaiseChild $\circ P[\mathbf{raise}] \longrightarrow \# c_{1} \parallel \cdots \parallel \# c_{n}$ Assumption: $\frac{\Gamma \vdash P[\mathbf{raise}]:1}{\Gamma_{1}:+^{\circ} \circ P[\mathbf{raise}]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Therefore, recompo                                                                         | osing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           |                                                                      |                                                                                          |
| $\frac{\Gamma_{1}, \Gamma_{3} \vdash E[N] : C}{\Gamma_{1}, \Gamma_{3}; \cdot \vdash^{\bullet} \bullet E[N]} \xrightarrow{\overline{c_{1}:S_{1}; \cdot \vdash^{\circ} \notin c_{1}}} \frac{\overline{c_{1}:S_{1}; \cdot \vdash^{\circ} \# c_{1}}}{c_{1}:S_{1}, \dots, c_{n}:S_{n}; \cdot \vdash^{\circ} \# c_{1} \parallel \cdots \parallel \# c_{n}}$ as required.<br>Case E-RaiseChild<br>$\circ P[\mathbf{raise}] \longrightarrow \# c_{1} \parallel \cdots \parallel \# c_{n}$ Assumption:<br>$\frac{\Gamma \vdash P[\mathbf{raise}]: 1}{\Gamma; \cdot \vdash^{\circ} \circ P[\mathbf{raise}]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>(</u>                                                                  | $\cdot S_{n-1} \cdot \cdot \models^{\circ} 4 C_{n-1}$                | $\overline{c_n:S_n:+}^\circ$ 4 $c_n$                                                     |
| $\frac{\Gamma_{1}, \Gamma_{3} \vdash E[N] : C}{\Gamma_{1}, \Gamma_{3}; \cdot \vdash^{\bullet} \bullet E[N]} \qquad \frac{c_{1} : S_{1}; \cdot \vdash^{\circ} \notin c_{1} \qquad \vdots \qquad c_{1} : S_{n}; \cdot \vdash^{\circ} \notin c_{1} \parallel \cdots \parallel \notin c_{n}}{c_{1} : S_{1}, \ldots, c_{n} : S_{n}; \cdot \vdash^{\bullet} \bullet E[N] \parallel \notin c_{1} \parallel \cdots \parallel \notin c_{n}}$ as required.<br>Case E-RaiseChild<br>$\circ P[\mathbf{raise}] \longrightarrow \notin c_{1} \parallel \cdots \parallel \notin c_{n}$ Assumption:<br>$\frac{\Gamma \vdash P[\mathbf{raise}] : 1}{\Gamma; \cdot \vdash^{\circ} \circ P[\mathbf{raise}]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u></u>                                                                   | · · · · · · · · · · · · · · · · · · ·                                | $c_n \cdot c_n$ , $\psi c_n$                                                             |
| $\frac{\Gamma_{1}, \Gamma_{3}; \cdot \vdash^{\bullet} \bullet E[N] \qquad c_{1}: S_{1}, \dots, c_{n}: S_{n}; \cdot \vdash^{\circ} \notin c_{1} \parallel \cdots \parallel \notin c_{n}}{\Gamma_{1}, \Gamma_{3}, c_{1}: S_{1}, \dots, c_{n}: S_{n}; \cdot \vdash^{\bullet} \bullet E[N] \parallel \notin c_{1} \parallel \cdots \parallel \notin c_{n}}$ as required.<br>Case E-RaiseChild<br>$\circ P[\mathbf{raise}] \longrightarrow \notin c_{1} \parallel \cdots \parallel \notin c_{n}$ Assumption:<br>$\frac{\Gamma \vdash P[\mathbf{raise}]: 1}{\Gamma; \cdot \vdash^{\circ} \circ P[\mathbf{raise}]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\Gamma_1, \Gamma_3 \vdash E[N]$ :                                                         | $c_1:S_1;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\vdash^{\circ} \not = c_1$                                               | :                                                                    |                                                                                          |
| $\Gamma_{1}, \Gamma_{3}, c_{1} : S_{1}, \dots, c_{n} : S_{n}; \cdot \vdash^{\bullet} \bullet E[N] \parallel \oint c_{1} \parallel \dots \parallel \oint c_{n}$<br>as required.<br>Case E-RaiseChild<br>$\circ P[\mathbf{raise}] \longrightarrow \oint c_{1} \parallel \dots \parallel \oint c_{n}$<br>Assumption:<br>$\frac{\Gamma \vdash P[\mathbf{raise}] : 1}{\Gamma; \cdot \vdash^{\circ} \circ P[\mathbf{raise}]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\Gamma_1, \Gamma_3; \cdot \vdash^{\bullet} \bullet E[$                                    | N]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $c_1:S_1,\ldots,c_n$                                                      | $S_n: S_n; \cdot \vdash^{\circ} \notin c_1 \parallel \cdot$          | $\  \frac{1}{2}c_n$                                                                      |
| as required.<br><b>Case</b> E-RaiseChild<br>$\circ P[\mathbf{raise}] \longrightarrow \ \ c_1 \parallel \cdots \parallel \ \ c_n$<br>Assumption:<br>$\frac{\Gamma \vdash P[\mathbf{raise}] : 1}{\Gamma; \cdot \vdash^\circ \circ P[\mathbf{raise}]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            | $\Gamma_1, \Gamma_3, c_1 : S_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $C_{m} \cdot S_{m} \cdot \cdot \models^{\bullet} \bullet$                 | $E[N] \parallel 4c_1 \parallel \cdots \mid$                          | $4c_n$                                                                                   |
| as required.<br>Case E-RaiseChild<br>$\circ P[\mathbf{raise}] \longrightarrow \ \ c_1 \parallel \cdots \parallel \ \ c_n$<br>Assumption:<br>$\frac{\Gamma \vdash P[\mathbf{raise}] : 1}{\Gamma; \cdot \vdash^\circ \circ P[\mathbf{raise}]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                            | -1,-3,01.01,.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , • • • • • • • • • •                                                     |                                                                      |                                                                                          |
| Case E-RaiseChild<br>$\circ P[\mathbf{raise}] \longrightarrow \ \ c_1 \parallel \cdots \parallel \ \ c_n$ Assumption:<br>$\frac{\Gamma \vdash P[\mathbf{raise}] : 1}{\Gamma; \cdot \vdash^{\circ} \circ P[\mathbf{raise}]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            | -1,-3,01 .01,.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , •                                                                       |                                                                      |                                                                                          |
| $\circ P[\mathbf{raise}] \longrightarrow \notin c_1 \parallel \cdots \parallel \notin c_n$<br>Assumption:<br>$\frac{\Gamma \vdash P[\mathbf{raise}] : 1}{\Gamma; \cdot \vdash^{\circ} \circ P[\mathbf{raise}]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | as required.                                                                               | -1,-3,-1 - 51,-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , • • • • • • • • • •                                                     | 2[1,1]    4 01                                                       |                                                                                          |
| Assumption:<br>$\frac{\Gamma \vdash P[\mathbf{raise}] \longrightarrow \ \ t c_1 \parallel \cdots \parallel \ \ t c_n}{\Gamma; \cdot \vdash^{\circ} \circ P[\mathbf{raise}]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | as required.<br>C <b>ase</b> E-RaiseChild                                                  | -1,-3,01,01,01,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , on . on, + -                                                            | 2[2,1]   4 01                                                        |                                                                                          |
| Assumption:<br>$\frac{\Gamma \vdash P[raise] : 1}{\Gamma; \cdot \vdash^{\circ} \circ P[raise]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | as required.<br>C <b>ase</b> E-RaiseChild                                                  | -1,-3,01,01,01,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           |                                                                      |                                                                                          |
| $\frac{\Gamma \vdash P[raise] : 1}{\Gamma; \cdot \vdash^{\circ} \circ P[raise]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | as required.<br>C <b>ase</b> E-RaiseChild                                                  | • <i>P</i> [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $[raise] \longrightarrow \ \ c_1$                                         | $\ \cdots\  4c_n$                                                    |                                                                                          |
| $\Gamma; \cdot \vdash^{\circ} \circ P[raise]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | as required.<br>C <b>ase</b> E-RaiseChild<br>Assumption:                                   | ∘ <i>P</i> [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $[raise] \longrightarrow \ \ c_1$                                         | $\ \cdots\  \notin c_n$                                              |                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | as required.<br>C <b>ase</b> E-RaiseChild<br>Assumption:                                   | ∘ <i>P</i> [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $[raise] \longrightarrow \notin c_1$ $\underline{\Gamma \vdash P[raise]}$ | $\ \cdots\  \notin c_n$                                              |                                                                                          |

Proc. ACM Program. Lang., Vol. POPL, No. 1, Article 1. Publication date: November 2019.

By Lemma C.4, the knowledge that  $\Gamma$  contains only runtime names, the knowledge that fn(P) = $c_1, \ldots, c_n$ , and the typing rule T-RAISE, we have that  $\Gamma = c_1 : S_1, \ldots, c_n : S_n$  for some session types Thus, by repeated applications of T-ZAP and T-MIX, we may deduce that  $\Gamma; \cdot \vdash^{\circ} \not \leq c_1 \parallel \cdots \parallel \not \leq c_n$ •*P*[raise]  $\longrightarrow$  halt  $\parallel \oint c_1 \parallel \cdots \parallel \oint c_n$ 

2167 where  $fn(P) = \{c_i\}_i$ . 2168 Assumption:

as required.

Case E-RaiseMain

2157

2158 2159

2160 2161

2162

2163 2164

2165 2166

2169 2170

2171 2172

2177

2178

2179

2186

2191

 $\{S_i\}_i$ .

 $\Gamma \vdash P[raise] : C$  $\overline{\Gamma; \cdot \vdash^{\bullet} \bullet P[raise]}$ 

By Lemma C.4, the knowledge that  $\Gamma$  contains only runtime names, the knowledge that fn(P) =2173  $c_1, \ldots, c_n$ , and the typing rule T-RAISE, we have that  $\Gamma = c_1 : S_1, \ldots, c_n : S_n$  for some session types 2174  $\{S_i\}_i$ . 2175

By repeated applications of T-ZAP and T-MIX, we may deduce that 2176

 $\Gamma; \cdot \vdash^{\circ} \not c_1 \parallel \cdots \parallel \not c_n$ 

By T-HALT, we have that  $\cdot; \cdot \vdash^{\bullet}$  halt. Thus, recomposing, we arrive at

| 2180 |           |                                             | $2 \cdot 10^{\circ} / 2$                                                                      | $\overline{2 + 5 + 1^{\circ}/2}$ |
|------|-----------|---------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------|
| 2181 |           |                                             | $\frac{c_{n-1}:s_{n-1}; \cdot \vdash \not \downarrow c_{n-1}}{2}$                             | $c_n: S_n; \vdash zc_n$          |
| 2182 |           | $c_1: S_1: \cdot \vdash^{\circ} 4c_1$       | :                                                                                             |                                  |
| 2183 | halt      |                                             | • • • • • • • • • • • • • • • • • • •                                                         |                                  |
| 2184 | ·;·⊢ nait | $c_1: s$                                    | $1,\ldots,c_n:S_n; \vdash \mathcal{Z}_1 \parallel \cdots$                                     | $\parallel z c_n$                |
| 2185 |           | $\Gamma_1, \Gamma_3, c_1: S_1, \ldots, c_n$ | $: S_n; \cdot \vdash^{\bullet} \mathbf{halt} \parallel \notin c_1 \parallel \cdots \parallel$ | $\frac{1}{2}c_n$                 |

as required. 2187

Case LiftC 2188

2189 Assumptions: 2190

•  $\Gamma; \Delta \vdash^{\phi} \mathcal{G}[C]$ 

```
• C \longrightarrow \mathcal{D}
2192
```

Let **D** be a derivation of  $\Gamma$ ;  $\Delta \vdash^{\phi} \mathcal{G}[C]$ . By Lemma C.6, we have that there exists some **D'** such 2193 that **D**' is a subderivation of **D** concluding  $\Gamma'$ ;  $\Delta' \vdash^{\phi'} C$ , where the position of **D**' in **D** corresponds 2194 to that of the hole in  $\mathcal{G}$ . 2195

By the IH, we have that there exists some  $\Gamma''; \Delta''$  such that  $\Gamma; \Delta \longrightarrow^{?} \Gamma''; \Delta''$  and  $\Gamma''; \Delta'' \vdash^{\phi} \mathcal{D}$ . 2196 By Lemma C.7, we have that there exist some  $\Gamma'''$ ;  $\Delta'''$  such that  $\Gamma$ ;  $\Delta \longrightarrow^{?} \Gamma'''$ ;  $\Delta'''$  and  $\Gamma'''$ :  $\Delta''' \vdash^{\phi}$ 2197  $\mathcal{G}[\mathcal{D}]$ , as required. 2198

2199 Case E-LiftM 2200

2201 Assumptions: 2202

| 2203 | $\Gamma \vdash M : A$                                |
|------|------------------------------------------------------|
| 2204 | $\overline{\Gamma;\cdot} \vdash^{\bullet} \bullet M$ |
| 2205 |                                                      |

and  $M \longrightarrow_{M} N$ . By Lemma 3.1, we have that  $\Gamma \vdash N : A$ . Recomposing:

 $\frac{\Gamma \vdash N : A}{\Gamma; \cdot \vdash^{\bullet} \bullet N}$ 

as required.

#### 2212 C.2 Canonical Forms

Theorem 3.7: Canonical Forms Given C such that  $\Gamma; \Delta \vdash^{\bullet} C$ , there exists some  $C' \equiv C$  such that  $\Gamma; \Delta \vdash^{\bullet} C'$  and C' is in canonical form.

PROOF. The proof is by induction on the count of *v*-bound variables, following Lindley and Morris [2015]. Without loss of generality, assume that the *v*-bound variables of *C* are distinct. Let  $\{a_i \mid 1 \le i \le n\}$  be the set of *v*-bound variables in *C* and let  $\{\mathcal{D}_j \mid 1 \le j \le m\}$  be the set of threads in *C*.

In the case that n = 0, by Lemma C.1 we can safely commute the main thread such that it is the rightmost configuration, and associate parallel composition to the right using Lemma C.2 to derive a well-typed canonical form.

2223 In the case that  $n \ge 1$ , pick some  $a_i$  and  $\mathcal{D}_i$  such that  $a_i$  is the only *v*-bound variable in fn( $\mathcal{D}_i$ ); 2224 Lemma 3.6 and a standard counting argument ensure that such a name and configuration exist. 2225 By the equivalence rules, there exists  $\mathcal{E}$  such that  $\Gamma; \Delta \vdash^{\phi} \mathcal{C} \equiv (va_i)(\mathcal{D}_i \parallel \mathcal{E})$  (that  $a_i$  is the only 2226 *v*-bound variable in fn( $\mathcal{D}_i$ ) ensures well-typing). Moreover, we have that there exist  $\Gamma' \subseteq \Gamma, \Delta' \subseteq \Delta$ , 2227 and *S*, such that either  $\Gamma'$ ,  $a_i : S; \Delta' \vdash^{\phi} \mathcal{E}$  or  $\Gamma'; \Delta', a_i : S \vdash^{\phi} \mathcal{E}$ . By the induction hypothesis, there 2228 exists  $\mathcal{E}'$  in canonical form such that either  $\Gamma', a_i : S; \Delta' \vdash^{\phi} \mathcal{E} \equiv \mathcal{E}'$  or  $\Gamma'; \Delta', a_i : S \vdash^{\phi} \mathcal{E} \equiv \mathcal{E}'$ . 2229 Let  $C' = (va_i)(\mathcal{D}_i \parallel \mathcal{E}')$ . By construction it holds that  $\Gamma; \Delta \vdash^{\phi} C \equiv C'$  and that C' is in canonical 2230 form. 2231

## C.3 Progress

2232

2239

2240

2241

2242 2243

2244

2245

2251

2254

To prove Theorem 3.9, we prove a similar property in which canonical configurations are decomposed step-by-step rather than in one go.

2236 Definition C.8 (Open Progress). Suppose  $\Psi$ ;  $\Delta \vdash^{\bullet} C$ , where C is in canonical form and  $C \Longrightarrow$ . 2237 We say that C satisfies open progress if:

(1)  $C = (va)(\mathcal{A} \parallel \mathcal{D})$ , where  $\Psi = \Psi_1, \Psi_2$  and  $\Delta = \Delta_1, \Delta_2$  such that either:

- (a)  $\Psi_1, a: S; \Delta_1 \vdash^{\circ} \mathcal{A}$  and  $\Psi_2; \Delta_2, a: \overline{S} \vdash^{\bullet} \mathcal{D}$  where  $\mathcal{D}$  satisfies open progress, and  $\mathcal{A}$  is either: (i) A thread  $\circ M$  where ready(b, M) for some  $b \in fn(\Psi_1, a: S)$ ; or
- (ii) A zapper thread  $\frac{1}{2}a$ ; or

(iii) A buffer  $b(\vec{V}) \leftrightarrow c(\vec{W})$  where  $b, c \neq a$  and either  $a \in \vec{V}$  or  $a \in \vec{W}$ 

(b)  $\Psi_1; \Delta_1, a : \overline{S} \vdash^{\circ} \mathcal{A}$  and  $\Psi_2, a : S; \Delta_2 \vdash^{\bullet} \mathcal{D}$ , where  $\mathcal{D}$  satisfies open progress, and  $\mathcal{A}$  is either  $a(\overrightarrow{V}) \leftrightarrow b(\overrightarrow{W})$  or  $b(\overrightarrow{V}) \leftrightarrow a(\overrightarrow{W})$  for some  $b \in fn(\Delta_1)$ 

(2)  $C = \mathcal{A} \parallel \mathcal{M}$ , where  $\Psi = \Psi_1, \Psi_2$  and either: (a)  $\Delta = \Delta_1, \Delta_2, a : S^{\sharp}$ , where  $\Psi_1, a : S; \Delta_1 \vdash^{\circ} \mathcal{A}$  and  $\Psi_2; \Delta_2, a : \overline{S} \vdash^{\bullet} \mathcal{M}$ , where  $\mathcal{M}$  satisfies open progress, and  $\mathcal{A}$  is either: (i) A thread  $\circ \mathcal{M}$  where ready $(b, \mathcal{M})$  for some  $b \in fn(\Psi_1, a : S)$ ; or

- (ii) A zapper thread  $\frac{1}{2}a$ ; or
  - (iii) A buffer  $b(\overrightarrow{V}) \leftrightarrow c(\overrightarrow{W})$  where  $b, c \neq a$  and either  $a \in fn(\overrightarrow{V})$  or  $a \in fn(\overrightarrow{W})$
- (b)  $\Delta = \Delta_1, \Delta_2, a : S^{\sharp}$ , where  $\Psi_1; \Delta_1, a : \overline{S} \vdash^{\circ} \mathcal{A}$  and  $\Psi_2, a : S; \Delta_2 \vdash^{\bullet} \mathcal{M}$ , where  $\mathcal{M}$  satisfies open progress, and  $\mathcal{A}$  is either  $a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})$  or  $b(\overrightarrow{V}) \longleftrightarrow a(\overrightarrow{W})$  for some  $b \in fn(\Delta_1)$

2207

2208 2209 2210

2211

| 56 | $\mathcal{A}$ is either:                                                                                                     |
|----|------------------------------------------------------------------------------------------------------------------------------|
| 57 | (i) A thread $\circ M$ where either $M = ()$ , or ready $(a, M)$ for some $a \in fn(\Psi_1)$ ; or                            |
| 58 | (ii) A zapper thread $\oint a$ for some $a \in fn(\Psi_1)$ ; or                                                              |
| 59 | (iii) A buffer $a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})$ for some $a, b \in fn(\Delta_1)$            |
| 50 | (3) $C = \mathcal{T}$ , where either:                                                                                        |
| 51 | (a) $\mathcal{T} = \bullet N$ , where N is either a value or ready $(b, N)$ for some $b \in fn(\Psi)$                        |
| 52 | (b) $\mathcal{T} = halt$                                                                                                     |
| 53 |                                                                                                                              |
| 54 | LEMMA C.9. Suppose $\Psi$ ; $\Delta \vdash C$ , where C is in canonical form and $C \Longrightarrow$ . Then C satisfies open |
| 65 | progress.                                                                                                                    |

(c)  $\Delta = \Delta_1, \Delta_2$ , where  $\Psi_1; \Delta_1 \vdash^{\circ} \mathcal{A}$  and  $\Psi_2; \Delta_2 \vdash^{\bullet} \mathcal{M}$ , where  $\mathcal{M}$  satisfies open progress, and

**PROOF.** By induction on the derivation of  $\Psi$ ;  $\Delta \vdash^{\bullet} C$ . We have three cases, based on the structure of the given canonical form.

<sup>2269</sup> **Case**  $C = (va)(\mathcal{A} \parallel \mathcal{D})$ , with  $a \in fn(\mathcal{A})$ , and where  $\mathcal{D}$  is in canonical form

By assumption, we know that  $\Psi$ ;  $\Delta \vdash^{\phi} (va)(\mathcal{A} \parallel \mathcal{D})$ .

This configuration is typeable by T-NU, followed by either T-CONNECT<sub>1</sub> or T-CONNECT<sub>2</sub>. As the definition of canonical forms requires that  $a \in fn(\mathcal{A})$ , it cannot be the case that the parallel composition arises as a result of T-MIX.

We consider these two subcases to show that  $\mathcal{A}$  satisfies the properties required by open progress. **Subcase** T-CONNECT<sub>1</sub>

$$\frac{\Psi_{1}, a: S; \Delta_{1} \vdash^{\phi_{1}} \mathcal{A} \qquad \Psi_{2}; \Delta_{2}, a: \overline{S} \vdash^{\phi_{2}} \mathcal{D}}{\Psi_{1}, \Psi_{2}; \Delta_{1}, \Delta_{2}, a: S^{\sharp} \vdash^{\phi_{1} + \phi_{2}} \mathcal{A} \parallel \mathcal{D}}$$
$$\frac{\Psi_{1}, \Psi_{2}; \Delta_{1}, \Delta_{2} \vdash^{\phi_{1} + \phi_{2}} (va)(\mathcal{A} \parallel \mathcal{D})}{\Psi_{1}, \Psi_{2}; \Delta_{1}, \Delta_{2} \vdash^{\phi_{1} + \phi_{2}} (va)(\mathcal{A} \parallel \mathcal{D})}$$

By the definition of auxiliary threads and inversion on the typing relation, we know that  $\mathcal{A}$  is of the following forms:

•  $\circ M$ , where  $a \in fn(M)$ , and  $\Psi_1, a : S \vdash M : \mathbf{1}$ 

• ‡ a

•  $b(\overrightarrow{V}) \leftrightarrow c(\overrightarrow{W})$ , where  $b, c \in fn(\Delta_1)$  and  $a \in fn(V)$ 

•  $b(\overrightarrow{V}) \leftrightarrow c(\overrightarrow{W})$ , where  $b, c \in fn(\Delta_1)$  and  $a \in fn(W)$ 

(since  $a \notin \Delta_1$ , it cannot be the case that *a* appears as a buffer endpoint).

Lemma 3.4 tells us that either there exists some M' such that  $M \longrightarrow_M M'$ ; that M is a value; or that M is a communication and concurrency construct. Since  $C \Longrightarrow$ , we have that M is unable to reduce (as otherwise C could reduce by E-LIFTM). Since  $a \in fn(M)$  and a does not have type 1, it cannot be the case that M is a value.

Therefore, we have that *M* has the form E[N], where *N* is a communication / concurrency construct. This cannot be **fork**, since **fork** may always reduce by E-FORK, so there must exist some  $b \in fn(\Psi, a : S)$  such that ready(b, M).

**Subcase** T-CONNECT<sub>2</sub>

| 2299 | $\Psi_1; \Delta_1, a: \overline{S} \mathrel{ ightarrow}^{\circ} \mathscr{A} \qquad \Psi_2, a: S; \Delta_2 \mathrel{ ightarrow}^{\bullet} \mathscr{D}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2300 | $\mathbf{y}(\mathbf{y}) \mathbf{y}(\mathbf{x}, \mathbf{x}) = \mathbf{x}^{\ddagger} \mathbf{y}^{\ddagger} \mathbf{y}^{i} \mathbf{y}^{i$ |
| 2301 | $\Psi_1, \Psi_2; \Delta_1, \Delta_2, d: \mathcal{S}^{\vee} \vdash \mathcal{H} \parallel \mathcal{D}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2302 | $\Psi_1, \Psi_2; \Delta_1, \Delta_2 \vdash^{\bullet} (\nu a)(\mathcal{A} \parallel \mathcal{D})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2303 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Proc. ACM Program. Lang., Vol. POPL, No. 1, Article 1. Publication date: November 2019.

1:48

By the definition of auxiliary threads and inversion on the typing relation, we know that  $\mathcal{A}$  is of the following forms:

2306 •  $a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})$ , where  $b \in \Delta_1$ 

•  $b(\overrightarrow{V}) \nleftrightarrow a(\overrightarrow{W})$ , where  $b \in \Delta_1$ 

(as  $a \in fn(\mathcal{A})$  and  $a \in \Delta_1$ , it cannot be the case that  $\mathcal{A}$  is a child thread or a zapper thread, as these require empty runtime typing environments).

By the induction hypothesis, we know that  $\mathcal{D}$  satisfies open progress; hence  $(va)(\mathcal{A} \parallel \mathcal{D})$  satisfies open progress.

 $2313 \quad Case \ C = \mathcal{A} \parallel \mathcal{M}$ 

2314

2315

2316

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2338

2339

2340

2341

2343

2344

2345 2346 2347

2348

2349

2352

There are three subcases, based on whether the parallel composition arises as a result of T-CONNECT<sub>1</sub>, T-CONNECT<sub>2</sub>, or T-MIX.

Subcase T-Connect<sub>1</sub>

$$\frac{\Psi_1, a: S; \Delta_1 \vdash^{\circ} \mathcal{A} \qquad \Psi_2; \Delta_2, a: \overline{S} \vdash^{\bullet} \mathcal{M}}{\Psi_1, \Psi_2; \Delta_1, \Delta_2, a: S^{\sharp} \vdash^{\bullet} \mathcal{A} \parallel \mathcal{M}}$$

By inversion on the typing rules, we have that  $\mathcal{A}$  may be:

• A child thread  $\circ M$ , where  $a \in fn(M)$ 

• A zapper thread  $\frac{1}{2}a$ 

• A buffer  $b(\overrightarrow{V}) \longleftrightarrow c(\overrightarrow{W})$ , where  $b, c \neq a$  and either  $a \in fn(\overrightarrow{V})$  or  $a \in fn(\overrightarrow{W})$ 

In the case of (1), by Lemma 3.4, we have that either *M* is a value; there exists *N* such that  $M \longrightarrow_M N$ ; or M = E[N] for some *E*, *N*, where *N* is a communication / concurrency construct.

By T-CHILD,  $\Psi_1, a : S \vdash M : \mathbf{1}$ . Since  $a \in fn(M)$  and the only value with type  $\mathbf{1}$  is the unit value () it therefore cannot be the case that M is a value. Since  $C \Longrightarrow$ , it cannot be the case that  $M \longrightarrow_M N$ , since otherwise C could reduce. Thus, it must be the case that M = E[N] where N is a communication and concurrency construct; by similar reasoning as above cases, it therefore must be the case that ready(b, M) for some  $b \in fn(\Psi_1, a : S)$ .

(2) and (3) satisfy the required conditions by definition.

Subcase T-CONNECT<sub>2</sub>

$$\frac{\Psi_{1}; \Delta_{1}, a: \overline{S} \vdash^{\circ} \mathcal{A}; \Psi_{2}, a: S; \Delta_{2} \vdash^{\bullet} \mathcal{M}}{\Psi_{1}, \Psi_{2}; \Delta_{1}, \Delta_{2}, a: S^{\sharp} \vdash^{\bullet} \mathcal{A} \parallel \mathcal{M}}$$

Since the runtime typing environment  $\Delta_1$ ,  $a : \overline{S}$  is non-empty, it cannot be the case that  $\mathcal{A}$  is a child thread or zapper thread. Thus,  $\mathcal{A}$  must either be of the form:

(1)  $a(\overrightarrow{V}) \longleftrightarrow b(\overrightarrow{W})$ , where  $a, b \in \Delta_1$ ; or

2342 (2)  $b(\overrightarrow{V}) \longleftrightarrow a(\overrightarrow{W})$ , where  $a, b \in \Delta_1$ 

which satisfy the required conditions by definition.

Subcase T-MIX

$$\frac{\Psi_1; \Delta_1 \vdash^{\circ} \mathcal{A} \qquad \Psi_2; \Delta_2 \vdash^{\bullet} \mathcal{M}}{\Psi_1, \Psi_2; \Delta_1, \Delta_2 \vdash^{\bullet} \mathcal{A} \parallel \mathcal{M}}$$

By inversion on the typing rules, we have that  $\mathcal{A}$  may either be:

2350 (1) A child thread  $\circ M$ 

(2) A zapper thread  $\oint a$  for some  $a \in fn(\Psi_1)$ 

Proc. ACM Program. Lang., Vol. POPL, No. 1, Article 1. Publication date: November 2019.

<sup>2353</sup> (3) A buffer thread  $a(\vec{V}) \leftrightarrow b(\vec{W})$  for some  $a, b \in fn(\Delta_1)$ 

By Lemma 3.4, we have that *M* is either a value *V*; there exists some *N* such that  $M \rightarrow_M N$ ; or M = E[N] for some *E*, *N* such that *N* is a communication and concurrency primitive. It cannot be the case that  $M \rightarrow_M N$  since otherwise the configuration could reduce.

<sup>2357</sup> By T-CHILD, it must be the case that  $\Psi_1$ ;  $\Delta_1 \vdash M : \mathbf{1}$ ; if M is a value then by inversion on the <sup>2358</sup> term typing rules, it must be the case that M = ().

Following the same reasoning as previous cases, if M = E[N] for some communication / concurrency primitive *N*, it must be that ready(*a*, *M*) for some  $a \in \Psi_1$ .

By the induction hypothesis, we know that  $\mathcal{M}$  satisfies open progress; hence  $\mathcal{A} \parallel \mathcal{M}$  satisfies open progress.

2364 Case  $C = \mathcal{T}$ 

2363

2365

2366

2367 2368

2369 2370 2371

2372

2373

2374

2375

2376

2377

2378

2382

Assumption:  $\Psi$ ;  $\Delta \vdash^{\bullet} \mathcal{T}$ . By the definition of  $\mathcal{T}$ , we have two subcases: **Subcase**  $\mathcal{T} = \bullet M$ 

$$\frac{\Psi \vdash M : A}{\Psi : \cdot \vdash^{\bullet} \bullet M}$$

By Lemma 3.4, we have that either *M* is a value; that there exists some *N* such that  $M \longrightarrow_M N$ ; or that there exist some *E*, *N* such that M = E[N] where *N* is a communication / concurrency primitive.

Again, as  $C \Longrightarrow$ , it cannot be the case that  $M \longrightarrow_M N$ , since otherwise C could reduce. If M is a value, then  $\mathcal{T}$  satisfies open progress.

Finally, if M = E[N] where N is a communication / concurrency primitive, it cannot be the case that  $N = \mathbf{fork} M'$  since it could reduce by T-FORK, and so it must be the case that  $\operatorname{ready}(a, M)$  for some  $a \in \Psi$ , satisfying open progress, as required.

## Subcase $\mathcal{T} = \text{halt}$

Immediate by the definition of open progress.

Theorem 3.9 provides a more global and concise view of the properties exhibited by a nonreducing process in canonical form, and arises as an immediate corollary.

**Theorem 3.9** Suppose  $\Psi$ ;  $\Delta \vdash C$  where *C* is in canonical form and  $C \Longrightarrow$ . 2385 2386 Let  $C = (va_1)(\mathcal{A}_1 \parallel (va_2)(\mathcal{A}_2 \parallel \cdots \parallel (va_n)(\mathcal{A}_n \parallel \mathcal{M}))\dots)).$ 2387 Either there exists some C' such that  $C \Longrightarrow C'$ , or: 2388 (1) For  $1 \le i \le n$ , each thread in  $\mathcal{A}_i$  is either: 2389 (a) a child thread  $\circ M$  for which there exists  $a \in \{a_j \mid 1 \le j \le i\} \cup fn(\Psi)$  such that ready(a, M); 2390 (b) a zapper thread  $\frac{1}{2}a_i$ ; or 2391 (c) a buffer. 2392 (2)  $\mathcal{M} = \mathcal{A}'_1 \parallel \cdots \parallel \mathcal{A}'_m \parallel \mathcal{T}$  such that for  $1 \le j \le m$ : 2393 (a)  $\mathcal{A}'_i$  is either: 2394 (i) a child thread  $\circ N$  such that N = () or ready(a, N) for some  $a \in \{a_i \mid 1 \le i \le n\} \cup fn(\Psi) \cup I$ 2395  $fn(\Delta);$ 2396 (ii) a zapper thread  $\frac{1}{2}a$  for some  $a \in \{a_i \mid 1 \le i \le n\} \cup fn(\Psi) \cup fn(\Delta)$ ; or 2397 (iii) a buffer. 2398 (b) Either  $\mathcal{T} = \bullet N$ , where N is either a value or ready(a, N) for some  $a \in \{a_i \mid 1 \leq i \leq i \leq i\}$ 2399 n}  $\cup$  fn( $\Psi$ )  $\cup$  fn( $\Delta$ ); or  $\mathcal{T} = halt$ . 2400 2401

S. Fowler et al.

#### C.4 Confluence

**Theorem 3.12 (Diamond Property)** If  $\Psi$ ;  $\Delta \vdash^{\phi} C$ , and  $C \Longrightarrow \mathcal{D}_1$ , and  $C \Longrightarrow \mathcal{D}_2$ , then either  $\mathcal{D}_1 \equiv \mathcal{D}_2$ , or there exists some  $\mathcal{D}_3$  such that  $\mathcal{D}_2 \Longrightarrow \mathcal{D}_3$  and  $\mathcal{D}_2 \Longrightarrow \mathcal{D}_3$ . 

**PROOF.** As noted in Section 3.4,  $\rightarrow_M$  is deterministic and hence confluent due to the setup of term evaluation contexts, and linearity ensures that endpoints to a buffer may not be shared. Consequently, communication actions on different channels may be performed in any order.

Nevertheless, two critical pairs arise due to asynchrony. The first arises when it is possible to send to or receive from a buffer; there is a choice of whether the send or the receive happens first. Both cases reduce to the same configuration after a single further step.

The second critical pair arises when sending to a buffer where the peer endpoint has a non-empty buffer and has been cancelled. There is a choice as to whether the value at the head of the queue is cancelled before or after the send takes place. Again, both cases reduce to the same configuration after a single further step. 

 $\rightarrow$ 

 $\rightarrow$ 

$$F[a] \parallel \frac{1}{2}b \parallel a(\overrightarrow{V}) \xrightarrow{} b(\overrightarrow{V} \cdot \overrightarrow{W} \cdot U) \qquad F[send U a] \parallel \frac{1}{2}b \parallel \frac{1}{2}V \parallel a(\overrightarrow{V}) \xrightarrow{} b(\overrightarrow{W})$$

$$F[a] \parallel \frac{1}{2}b \parallel \frac{1}{2}V \parallel a(\overrightarrow{V}) \xrightarrow{} b(\overrightarrow{W} \cdot U)$$

#### D SUPPLEMENT TO SECTION 4.1 (METATHEORY OF EGV WITH ACCESS POINTS) 2451

2452 In this section, we prove that the extension of EGV with access points satisfies preservation. 2453

LEMMA D.1 (PRESERVATION, ACCESS POINTS (EQUIVALENCE)). If  $\Gamma; \Delta \vdash^{\phi} C$  and  $C \equiv \mathcal{D}$ , then 2454  $\Gamma: \Delta \vdash^{\phi} \mathcal{D}$ 2455

2456 **PROOF.** By induction on the derivation of  $C \equiv \mathcal{D}$ . Rule T-CONNECTN subsumes T-CONNECT<sub>1</sub> 2457 and T-CONNECT<sub>2</sub>, so the majority of cases are similar to those we have proven in Lemma C.1. We 2458 consider the case for associativity in detail. 2459

Case  $C \parallel (\mathcal{D} \parallel \mathcal{E}) \equiv (C \parallel \mathcal{D}) \parallel \mathcal{E}$ 2460

 $\Gamma_1, \overrightarrow{a:S}; \Lambda_1, \overrightarrow{b:T} \vdash^{\phi_1} C$ 

2463 2464

2465

94

where

$$\Gamma; \Delta_1, \Delta_2, \Delta_3, \overline{a:S^{\sharp}}, \overline{b:T^{\sharp}}, \overline{c:S'^{\sharp}}, \overline{d:T'^{\sharp}} \vdash^{\phi_1 + \phi_2 + \phi_3} C \parallel (\mathcal{D} \parallel \mathcal{E})$$

 $\overrightarrow{a:\overline{S}} = a_1:\overline{S_1},\ldots,a_m:\overline{S_m},\ldots,a_n:\overline{S_n}$ 

 $\overrightarrow{b:T} = b_1: T_1, \ldots, b_{m'}: T_{m'}, \ldots, b_{n'}: T_{n'}$ 

 $\iff$ 

 $\Gamma = \Gamma'' + \Gamma_3$ 

 $\begin{array}{c} b_1; T_1^{\sharp}, \dots, b_{m'}; T_{m'}^{\sharp}; \\ b_{m'+1}; \overline{T_{m'+1}}, \dots, b_{n'}; \overline{T_{n'}}, \vdash^{\phi_1+\phi_2} C \parallel \mathcal{D} \end{array} \qquad \begin{array}{c} \Gamma_3, b_{m'+1}, \dots, b_n; T_n, d: T'; \\ \Delta_3, a_{m+1}; \overline{S_{m+1}}, \dots, a_n; \overline{S_n}, \overline{c}; \overline{S'} \vdash^{\phi_3} \mathcal{E} \end{array}$ 

The lemmas for subterm typeability and replacement are slightly different as we must consider

 $\overrightarrow{\Gamma:\Delta_1,\Delta_2,\Delta_3,a:S^{\ddagger},\overrightarrow{b:T^{\ddagger},\overrightarrow{c:S'^{\ddagger},\overrightarrow{d:T'^{\ddagger}}}},\overrightarrow{d:T'^{\ddagger}},\overrightarrow{\phi_1+\phi_2+\phi_3}C \parallel (\mathcal{D} \parallel \mathcal{E})$ 

$$\begin{split} \Gamma &= \Gamma_1 + \Gamma' \\ \Gamma' &= \Gamma_2 + \Gamma_3 \\ \Gamma_2, b_1 : T_1, \dots, b_{m'} : T_{m'}, \overrightarrow{c:S'}; \Delta_2, a_1 : \overrightarrow{S_1}, \dots, a_m : \overrightarrow{S_m}, \overrightarrow{d:\overrightarrow{T'}} \vdash^{\phi_2} \mathcal{D} \end{split}$$

 $\Gamma_3, b_{m'+1}, \ldots, b_{n'}: T_{n'}, \overrightarrow{d:T'}; \Delta_3, a_{m+1}: \overrightarrow{S_{m+1}}, \ldots, a_n: \overrightarrow{S_n}, \overrightarrow{c:S'} \vdash \phi_3 \mathcal{E}$ 

 $\Gamma', \overrightarrow{b:T}; \Delta_2, \Delta_3, \overrightarrow{a:S}, \overrightarrow{c:S'^{\sharp}}, \overrightarrow{d:T'^{\sharp}} \vdash^{\phi_2 + \phi_3} \mathcal{D} \parallel \mathcal{E}$ 

 $\Gamma_3, b_{m'+1}, \ldots, b_n : T_n, \overrightarrow{d:T'};$ 

2473 2474

2475

2476

2477 2478

2482

2483

2484

2485

2486 2487

2488

2489

2490

2491 2492

2493 2494

2495

2496

2497

2498 2499



**PROOF.** By induction on the structure of *E*.

unrestricted environments.

LEMMA D.3 (REPLACEMENT (ACCESS POINTS)). If:

• **D** is a derivation of  $\Gamma \vdash E[M] : A$ , such that  $\Gamma = \Gamma_1 + \Gamma_2$ 

 $\Gamma'' = \Gamma_1 + \Gamma_2$  $\Gamma_1, \overrightarrow{a:S}; \Delta_1, \overrightarrow{b:T} \vdash^{\phi_1} C$ 

 $\Gamma_2, b_1: T_1, \ldots, b_m: T_m, \overrightarrow{c:S'}; \Delta_2, \overrightarrow{d:T'} \vdash^{\phi_2} \mathcal{D}$ 

 $\Gamma'', a_{m+1}: S_{m+1}, \ldots, a_n: S_n$ 

 $\Delta_1, \Delta_2, a_1: S_1^{\sharp}, \ldots, a_m: S_m^{\sharp},$ 

• **D'** is a subderivation of **D** concluding  $\Gamma_2 \vdash M : B$ 

1:51

• The position of **D**' in **D** corresponds to that of the hole in E 2500 •  $\Gamma_3 \vdash N : B$ 2501 •  $\Gamma' = \Gamma_1 + \Gamma_3$  is defined 2502 2503 then  $\Gamma' \vdash E[N] : A$ . 2504 **PROOF.** By induction on the structure of *E*. 2505 2506 THEOREM D.4 (PRESERVATION, ACCESS POINTS). If  $\Gamma; \Delta \vdash^{\phi} C$  and  $C \Longrightarrow \mathcal{D}$ , then  $\Gamma; \Delta \vdash^{\phi} \mathcal{D}$ . 2507 2508 **PROOF.** Recall that  $\implies$  is defined as  $\equiv \implies \equiv$ . Therefore, the result arises by induction on the 2509 derivation of  $\mathcal{C} \longrightarrow \mathcal{D}$  and as a corollary of Lemma D.1. 2510 Again, since T-CONNECTN subsumes T-CONNECT1 and T-CONNECT2, it suffices only to prove the 2511 new cases required for access point reduction. 2512 Case E-Spawn 2513 2514 Assumption: 2515 2516  $\Gamma \vdash E[\mathbf{spawn} M] : C$ 2517  $\overline{\Gamma: \cdot \vdash^{\bullet} \bullet E[\text{spawn } M]}$ 2518 By Lemma D.2, we have that  $\Gamma = \Gamma_1 + \Gamma_2$ , and 2519 2520  $\Gamma_2 \vdash M : \mathbf{1}$ 2521  $\overline{\Gamma_2} \vdash \mathbf{spawn} \ M : \mathbf{1}$ 2522 2523 By Lemma D.3, we have that  $\Gamma_1 \vdash E[()] : C$ . 2524 **Recomposing:** 2525  $\frac{\Gamma = \Gamma_1 + \Gamma_2 \qquad \Gamma_1; \cdot \vdash^{\bullet} E[()] \qquad \Gamma_2; \cdot \vdash^{\circ} \circ M}{\Gamma; \cdot \vdash^{\bullet} E[()] \parallel \circ M}$ 2526 2527 2528 as required. 2529 2530 Case E-New

2532 Assumption:

2531

2533

2534

2535

 $\Gamma \vdash E[\mathbf{new}_S] : C$  $\overline{\Gamma;\cdot} \vdash^{\bullet} \bullet E[\mathbf{new}_{\circ}]$ 

2536 By Lemma D.2 and TA-New, we have that  $\cdot \vdash \mathbf{new}_S : AP(S)$ . 2537 By Lemma D.3, we have that  $\Gamma, z : AP(S) \vdash E[z] : C$ . 2538 Thus, we can show: 2539  $\Gamma, z : AP(S) \vdash E[z] : C$ 2540  $\overline{\Gamma, z: \mathsf{AP}(S); \cdot \vdash^{\bullet} \bullet E[z]} \quad \quad \cdot; z: \mathsf{AP}(S) \vdash^{\circ} z(\epsilon, \epsilon)$ 2541 2542

 $\Gamma, z : \mathsf{AP}(S); z : S \vdash^{\bullet} \bullet E[z] \parallel z(\epsilon, \epsilon)$ 2543  $\Gamma; \cdot \vdash^{\bullet} (vz)(\bullet E[z] \parallel z(\epsilon, \epsilon))$ 2544 2545 as required. 2546

Case E-Accept 2547

2548

Proc. ACM Program. Lang., Vol. POPL, No. 1, Article 1. Publication date: November 2019.

2549 Assumption:2550

$$\frac{\Gamma \vdash E[\mathbf{accept} \, z] : C}{\Gamma; \cdot \vdash^{\bullet} \bullet E[\mathbf{accept} \, z]} \quad \because; z : S, \mathcal{X} : \overline{S}, \mathcal{Y} : S \vdash^{\circ} z(\mathcal{X}, \mathcal{Y})}{\Gamma; z : S, \mathcal{X} : \overline{S}, \mathcal{Y} : S \vdash^{\bullet} \bullet E[\mathbf{accept} \, z] \parallel z(\mathcal{X}, \mathcal{Y})}$$

By Lemma D.2, we have that  $\Gamma = \Gamma_1 + \Gamma_2$  and that  $\Gamma_2 \vdash \mathbf{accept} \ z : S$ . Thus by TA-ACCEPT we have that  $z : AP(S) \in \Gamma$ .

<sup>2556</sup> By Lemma D.3, we have that  $\Gamma$ ,  $a : S \vdash E[a] : C$ .

Recomposing, we have that:

$$\frac{\Gamma, a: S \vdash E[a]: C}{\Gamma, a: S; \vdash^{\bullet} \bullet E[a]} \quad \because ; z: S, X : \overline{S}, a: \overline{S}, \mathcal{Y} : S \vdash^{\circ} z(\{a\} \cup X, \mathcal{Y})}{\Gamma; z: S, X : \overline{S}, \mathcal{Y} : S, a: S^{\sharp} \vdash^{\bullet} \bullet E[a] \parallel z(\{a\} \cup X, \mathcal{Y})}$$
$$\frac{\Gamma; z: S, X : \overline{S}, \mathcal{Y} : S \vdash^{\circ} (va)(\bullet E[a] \parallel z(\{a\} \cup X, \mathcal{Y}))}{\Gamma; z: S, X : \overline{S}, \mathcal{Y} : S \vdash^{\circ} (va)(\bullet E[a] \parallel z(\{a\} \cup X, \mathcal{Y}))}$$

**Case** E-Request Assumption:

$$\frac{\Gamma \vdash E[\text{request } z] : C}{\Gamma; \vdash^{\bullet} \bullet E[\text{request } z]} \quad \because; z : S, X : \overline{S}, \mathcal{Y} : S \vdash^{\circ} z(X, \mathcal{Y})}{\Gamma; z : S, X : \overline{S}, \mathcal{Y} : S \vdash^{\bullet} \bullet E[\text{accept } z] \parallel z(X, \mathcal{Y})}$$

By Lemma D.2, we have that  $\Gamma = \Gamma_1 + \Gamma_2$  and that  $\Gamma_2 \vdash \mathbf{request} \ z : \overline{S}$ . Thus by TA-REQUEST we have that  $z : AP(S) \in \Gamma$ .

By Lemma D.3, we have that  $\Gamma$ ,  $a : \overline{S} \vdash E[a] : C$ . As duality is involutive, we have that  $\overline{S} = S$ . Recomposing, we have that:

 $\frac{\Gamma, a: \overline{S} \vdash E[a]: C}{\Gamma, a: \overline{S}; \vdash^{\bullet} \bullet E[a]} \quad :; z: S, X: \overline{S}, \mathcal{Y}: S, a: S \vdash^{\circ} z(X, \{a\} \cup \mathcal{Y}) \\
\frac{\Gamma; z: S, X: \overline{S}, \mathcal{Y}: S, a: \overline{S}^{\sharp} \vdash^{\bullet} \bullet E[a] \parallel z(X, \{a\} \cup \mathcal{Y})}{\Gamma; z: S, X: \overline{S}, \mathcal{Y}: S \vdash^{\bullet} (va)(\bullet E[a] \parallel z(X, \{a\} \cup \mathcal{Y}))}$ 

as required.

2583 Case E-Match

2585 Assumption:

$$\cdot; z: S, a: \overline{S}, X: \overline{S}, b: S, \mathcal{Y}: S \vdash^{\circ} z(\{a\} \cup X, \{b\} \cup \mathcal{Y})$$

Recomposing:

$$\frac{\langle z : S, X : \overline{S}, \mathcal{Y} : S \vdash^{\circ} z(X, \mathcal{Y})}{\langle z : S, a : \overline{S}, X : \overline{S}, b : S, \mathcal{Y} : S \vdash^{\circ} z(X, \mathcal{Y})} \xrightarrow{S/\epsilon = S/\epsilon \quad \cdot \vdash \epsilon : \epsilon \quad \cdot \vdash \epsilon : \epsilon}{\langle z : \overline{S}, b : S \vdash^{\circ} a(\epsilon) \nleftrightarrow b(\epsilon)}$$

| - |
|---|
|   |

S. Fowler et al.



Fig. 13. Cases of Distributed Delegation

## **E** DISTRIBUTED DELEGATION

A key feature of  $\pi$ -calculus is *mobility*, that is, sending channel names as values. In session-based languages and calculi, mobility is realised as *session delegation*, allowing session-typed channel endpoints to be sent over other session-typed channels. We saw an example of session delegation in §6, in the ChatClient type:

```
typename ChatClient =!Nickname.
  [&|Join:?(Topic, [Nickname], ClientReceive).ClientSend,
    Nope:End|&];
```

An endpoint of type ClientReceive is passed as a message.

## E.1 Challenges of Distributed Delegation

Session delegation is a vital abstraction in session-based programming. However, its integration with both asynchrony *and* distribution brings several challenges. The seminal work on distributed delegation is Session Java [Hu et al. 2008].

Fig. 13 shows three scenarios of distributed delegation, as described by Hu et al. [2008]. We write  $X \stackrel{x}{\Rightarrow} Y$  to indicate that X wishes to send x to Y over y on the basis that X's last known y

location of the corresponding endpoint for y is Y. Now suppose  $B \stackrel{b}{=} C$ . Following Hu et al. [2008], we refer to B as the *session-sender*, C as the *session-receiver*, and A as a *passive party*. There is no

happens-before relation between *A* sending a message to *B* along *a*, and *B* delegating *b* to *C* along *c*. Thus, a message could be sent to *A* after *A* has given up control of *a*. Following Hu et al. [2008], we call such messages *lost messages*.

2646

2623

2624

2625

2626

2627

2628

2629

2630

2631 2632

2633

2634

2635

2636

2637

2638

| 1. $A \to S$ : Send $(t, v, [b \mapsto \overrightarrow{V}])$                       |
|------------------------------------------------------------------------------------|
| 2. A : start recording lost messages $\overrightarrow{W}$ for b                    |
| 3. $S: \sigma = \sigma[b \mapsto B]; \delta = \delta \cup \{t\}$                   |
| 4. $S \rightarrow B$ : Deliver $(t, v, [b \mapsto \overrightarrow{V}])$            |
| 5. $S \rightarrow A$ : GetLostMessages([b])                                        |
| 6. A : stop recording lost messages for b                                          |
| 7. $A \to S$ : LostMessageResponse( $[b \mapsto \overrightarrow{W}]$ )             |
| 8. $S \to B$ : Commit $(t, [b \mapsto \overrightarrow{W}])$                        |
| 9. $S: \delta = \delta \setminus \{t\}$                                            |
| 10. $B: buffers[b] = \overrightarrow{V} + \overrightarrow{W} + \overrightarrow{U}$ |
| where $\overrightarrow{U}$ = messages received for b between (3) and (8)           |

Fig. 14. Operation of Distributed Delegation Protocol

## E.2 Approaches to Distributed Delegation

The simplest safe way to implement distributed delegation is to store all buffers on the server, but this requires a blocking remote call for every receive operation. A second naïve method is *indefinite redirection*, where the session-sender indefinitely forwards all messages to the session-receiver. This retains buffer locality, but requires the session-sender to remain online for the duration of the delegated session.

Hu et al. [2008] describe two more realistic distributed delegation algorithms: a *resending* protocol, which re-sends lost messages *after* a connection for the delegated session is established, and a *forwarding* protocol, which forwards lost messages *before* the delegated session is established. The key idea behind both algorithms is to establish a connection between the passive party and the session-receiver, ensure that the lost messages are received by the session-receiver, and to continue the session only once lost messages are received.

## E.3 Delegation in Distributed Session Links

Alas, we cannot directly re-use the resending and forwarding protocols of Hu et al. [2008] because of two fundamental differences in our setting: Links clients do not connect to each other directly, and in Links multiple sessions may be sent at once. Thus, we describe the high-level details of a modified algorithm which addresses these two constraints. We utilise two key ideas:

- Much like the resending protocol, lost messages are retrieved and relayed to the session-receiver once the new session has been established.
- We ensure the session-receiver endpoint is not delegated until the delegation has completed, by queueing messages that include the session-receiver endpoint, and resending them once delegation has completed.

We now consider the case where session-sender and session-receiver are different clients; the case where session-sender is a client and session-receiver the server is similar. Let client A be session-sender and client B be session-receiver.

*Example*. Suppose client *A* sends a value v containing a session endpoint *d* along channel (*s*, *t*), recalling that *s* is the peer endpoint and *t* is the local endpoint. The initial endpoint location table is:

$$\sigma \triangleq [s \mapsto A, t \mapsto B, b \mapsto A, c \mapsto A]$$

Fig. 14 shows the operation of the delegation protocol on this example. In Step 1, A sends a message 2696 2697 to the server S, containing the peer endpoint t, value to send v, and the buffer  $\overrightarrow{V}$  for b, before 2698 beginning to record lost messages for *b*. Upon receiving this message, the server updates its internal 2699 mapping for the location of b to be B, adds t to the set of delegation carriers  $\delta$ , and sends a Deliver 2700 message containing t, v, and  $\overrightarrow{V}$ , before sending a GetLostMessages request to A. Upon receiving 2701 this message, A will stop recording lost messages for b, and relay the lost messages  $\vec{W}$  for b to 2702 S. The server then sends a Commit message containing t and the lost messages for all delegated 2703 endpoints, and removes *t* from the set of delegation carriers. 2704

The final buffer for *b* is the concatenation of the initial buffer  $\vec{V}$ , the lost messages  $\vec{W}$ , and all messages  $\vec{U}$  received for *b* before the Commit message.

## 2708 E.4 Correctness

2707

We argue correctness of the algorithm in a similar manner to Hu et al. [2008]. Due to co-operative threading, we can treat each sequence of actions happening at a single participant (for example, steps 3–8) as atomic. Since (as per step 3) the endpoint location table is updated prior to the lost message request, we can safely split the buffer of the delegated session into three parts: the initial buffer being delegated ( $\vec{V}$ ); the lost messages ( $\vec{W}$ ); and the messages received after the change in the lookup table but before the Commit message is received ( $\vec{U}$ ) and reassemble them, retaining ordering.

In our setting, since session channels are not associated with sockets, simultaneous delegation (Fig. 13b) can be handled in the same way as simple delegation. In the case of entangled delegation (Fig. 13c), since delegation carriers may not be delegated themselves until the lost messages have been received, we can be sure that the lost message requests are sent to the correct participant. Hence, the case devolves to simple delegation.

- 2742
- 2743 2744